Advertisement

Electrical Engineering

, Volume 101, Issue 4, pp 1221–1233 | Cite as

Design of an optimized fractional high-order differential feedback controller for an AVR system

  • Mustafa Sinasi AyasEmail author
Original Paper
  • 58 Downloads

Abstract

This paper proposes a high-order differential feedback controller (HODFC) and a fractional high-order differential feedback controller (FHODFC) to improve regulating ability of a commonly used automatic voltage regulator (AVR) system. In controller design process, particle swarm optimization (PSO) algorithm is utilized together with analytic approach. A constrained optimization problem is solved by PSO algorithm considering a specified objective function to obtain a less setting time, percentage overshoot, and regulation error. In order to test the performance of the proposed controllers, optimally tuned (proportional–integral–derivative) PID controllers available in the literature are implemented. The results demonstrate that the proposed FHODFC provides less percentage overshoot, settling time, rise time, and peak time than other proposed controllers, i.e., HODFC. Furthermore, the performance of the several available PID controllers is significantly worse than both of the proposed controllers in terms of transient response characteristics.

Keywords

AVR system Fractional high-order differential feedback controller High-order differentiator Fractional calculus 

Notes

References

  1. 1.
    Agee JT, Bingul Z, Kizir S (2015) Higher-order differential feedback control of a flexible-joint manipulator. J Vib Control 21(10):1976–1986MathSciNetCrossRefGoogle Scholar
  2. 2.
    Agee JT, Bingul Z, Kizir S (2017) Trajectory and vibration control of a single-link flexible-joint manipulator using a distributed higher-order differential feedback controller. J Dyn Syst Meas Control 139(8):081006CrossRefGoogle Scholar
  3. 3.
    Al Gizi AJ (2018) A particle swarm optimization, fuzzy PID controller with generator automatic voltage regulator. Soft Comput pp 1–15Google Scholar
  4. 4.
    Ang KH, Chong G, Li Y (2005) PID control system analysis, design, and technology. IEEE Trans Control Syst Technol 13(4):559–576CrossRefGoogle Scholar
  5. 5.
    Anwar MN, Pan S (2014) A frequency domain design of PID controller for an AVR system. J Zhejiang Univ Sci C 15(4):293–299CrossRefGoogle Scholar
  6. 6.
    Basu A, Mohanty S, Sharma R (2016) Designing of the PID and FOPID controllers using conventional tuning techniques. In: 2016 International conference on inventive computation technologies (ICICT), vol 2. IEEE, pp 1–6Google Scholar
  7. 7.
    Bingul Z, Karahan O (2018) A novel performance criterion approach to optimum design of PID controller using cuckoo search algorithm for AVR system. J Frankl Inst 355(13):5534–5559MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Calderón AJ, Vinagre BM, Feliu V (2006) Fractional order control strategies for power electronic buck converters. Signal Process 86(10):2803–2819zbMATHCrossRefGoogle Scholar
  9. 9.
    Chatterjee A, Mukherjee V, Ghoshal S (2009) Velocity relaxed and craziness-based swarm optimized intelligent PID and PSS controlled AVR system. Int J Electr Power Energy Syst 31(7–8):323–333CrossRefGoogle Scholar
  10. 10.
    Chatterjee S, Mukherjee V (2016) PID controller for automatic voltage regulator using teaching–learning based optimization technique. Int J Electr Power Energy Syst 77:418–429CrossRefGoogle Scholar
  11. 11.
    Du S, van Wyk BJ, Qi G, Tu C (2009) Chaotic system synchronization with an unknown master model using a hybrid HOD active control approach. Chaos Solitons Fractals 42(3):1900–1913zbMATHCrossRefGoogle Scholar
  12. 12.
    Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95 Proceedings of the sixth international symposium on micro machine and human science. IEEE, pp 39–43Google Scholar
  13. 13.
    Ekinci S, Hekimoğlu B (2019) Improved kidney-inspired algorithm approach for tuning of PID controller in AVR system. IEEE Access 7:39935–39947CrossRefGoogle Scholar
  14. 14.
    Estakhrouieh MR, Gharaveisi AA (2013) Optimal iterative learning control design for generator voltage regulation system. Turk J Electr Eng Comput Sci 21(Sup. 1):1909–1919CrossRefGoogle Scholar
  15. 15.
    Faradja P, Qi G (2015) Robustness based comparison between a sliding mode controller and a model free controller with the approach of synchronization of nonlinear systems. In: 2015 15th international conference on control, automation and systems (ICCAS). IEEE, pp 36–40Google Scholar
  16. 16.
    Gaing ZL (2004) A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Trans Energy Convers 19(2):384–391CrossRefGoogle Scholar
  17. 17.
    Gozde H, Taplamacioglu MC (2011) Comparative performance analysis of artificial bee colony algorithm for automatic voltage regulator (AVR) system. J Frankl Inst 348(8):1927–1946zbMATHCrossRefGoogle Scholar
  18. 18.
    Gupta T, Sambariya D (2017) Optimal design of fuzzy logic controller for automatic voltage regulator. In: 2017 international conference on information, communication, instrumentation and control (ICICIC). IEEE, pp 1–6Google Scholar
  19. 19.
    Kashki M, Abdel-Magid YL, Abido MA (2008) A reinforcement learning automata optimization approach for optimum tuning of PID controller in AVR system. In: International conference on intelligent computing. Springer, pp 684–692Google Scholar
  20. 20.
    Kim DH (2011) Hybrid GA-BF based intelligent PID controller tuning for AVR system. Appl Soft Comput 11(1):11–22CrossRefGoogle Scholar
  21. 21.
    Kundur P, Balu NJ, Lauby MG (1994) Power system stability and control, vol 7. McGraw-Hill, New YorkGoogle Scholar
  22. 22.
    Machado JT (2013) Optimal controllers with complex order derivatives. J Optim Theory Appl 156(1):2–12MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Ntouskas S, Sarimveis H, Sopasakis P (2018) Model predictive control for offset-free reference tracking of fractional order systems. Control Eng Pract 71:26–33CrossRefGoogle Scholar
  24. 24.
    Nyabundi S, Qi G, Hamam Y, Munda J (2009) Dc motor control via high order differential feedback control. In: AFRICON, 2009. AFRICON’09. IEEE, pp 1–5Google Scholar
  25. 25.
    Ortiz-Quisbert ME, Duarte-Mermoud MA, Milla F, Castro-Linares R, Lefranc G (2018) Optimal fractional order adaptive controllers for AVR applications. Electr Eng 100(1):267–283CrossRefGoogle Scholar
  26. 26.
    Oustaloup A, Levron F, Mathieu B, Nanot FM (2000) Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans Circuits Syst I Fundam Theory Appl 47(1):25–39CrossRefGoogle Scholar
  27. 27.
    Oustaloup A, Moreau X, Nouillant M (1996) The crone suspension. Control Eng Pract 4(8):1101–1108CrossRefGoogle Scholar
  28. 28.
    Qi G, Chen Z, Yuan Z (2005) Model-free control of affine chaotic systems. Phys Lett A 344(2–4):189–202zbMATHCrossRefGoogle Scholar
  29. 29.
    Qi G, Chen Z, Yuan Z (2008) Adaptive high order differential feedback control for affine nonlinear system. Chaos Solitons Fractals 37(1):308–315MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Ribeiro R, Neto C, Costa F, Rocha T, Barreto R (2015) A sliding-mode voltage regulator for salient pole synchronous generator. Electr Power Syst Res 129:178–184CrossRefGoogle Scholar
  31. 31.
    Sahib MA (2015) A novel optimal PID plus second order derivative controller for AVR system. Eng Sci Technol Int J 18(2):194–206CrossRefGoogle Scholar
  32. 32.
    Sahib MA, Ahmed BS (2016) A new multiobjective performance criterion used in PID tuning optimization algorithms. J Adv Res 7(1):125–134CrossRefGoogle Scholar
  33. 33.
    dos Santos Coelho L (2009) Tuning of PID controller for an automatic regulator voltage system using chaotic optimization approach. Chaos Solitons Fractals 39(4):1504–1514CrossRefGoogle Scholar
  34. 34.
    Shi X, Dai Y, Liu Z, Qi G (2010) High order differential feedback controller and its application in servo control system of NC machine tools. In: 2010 international conference on system science, engineering design and manufacturing informatization (ICSEM). IEEE, vol 1, pp 241–244Google Scholar
  35. 35.
    Sun H, Zhang Y, Baleanu D, Chen W, Chen Y (2018) A new collection of real world applications of fractional calculus in science and engineering. Commun Nonlinear Sci Numer Simul 62:409–417MathSciNetCrossRefGoogle Scholar
  36. 36.
    Tang Y, Cui M, Hua C, Li L, Yang Y (2012) Optimum design of fractional order pi\(\lambda \)d\(\mu \) controller for AVR system using chaotic ant swarm. Expert Syst Appl 39(8):6887–6896CrossRefGoogle Scholar
  37. 37.
    Tavazoei MS (2010) Notes on integral performance indices in fractional-order control systems. J Process Control 20(3):285–291CrossRefGoogle Scholar
  38. 38.
    Tavazoei MS (2014) Time response analysis of fractional-order control systems: a survey on recent results. Fract Calc Appl Anal 17(2):440–461MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Vinagre B, Podlubny I, Hernandez A, Feliu V (2000) Some approximations of fractional order operators used in control theory and applications. Fract Calc Appl Anal 3(3):231–248MathSciNetzbMATHGoogle Scholar
  40. 40.
    Wei X, Jingjing M, Hongyan J, Fei Y (2010) The main steam temperature cascade control of high order differential of feedback controller. In: 2010 international conference on intelligent system design and engineering application (ISDEA). IEEE, vol 2, pp 683–687Google Scholar
  41. 41.
    Xue W, Xue Y, Qi G, Gao J, Zheng S (2007) Study of high order differential feedback control of DC-link voltage in active power filter. In: 2007 IEEE international conference on automation and logistics. IEEE, pp 1063–1066Google Scholar
  42. 42.
    Yüce A, Deniz FN, Tan N, Atherton DP (2015) Obtaining the time response of control systems with fractional order PID from frequency responses. In: 2015 9th international conference on electrical and electronics engineering (ELECO). IEEE, pp 832–836Google Scholar
  43. 43.
    Zamani M, Karimi-Ghartemani M, Sadati N, Parniani M (2009) Design of a fractional order PID controller for an AVR using particle swarm optimization. Control Eng Pract 17(12):1380–1387CrossRefGoogle Scholar
  44. 44.
    Zhu H, Li L, Zhao Y, Guo Y, Yang Y (2009) CAS algorithm-based optimum design of PID controller in AVR system. Chaos Solitons Fractals 42(2):792–800CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Electronics EngineeringKaradeniz Technical UniversityTrabzonTurkey

Personalised recommendations