Electrical Engineering

, Volume 101, Issue 3, pp 845–853 | Cite as

Effect of mechanical stress on different core loss components along orthogonal directions in electrical steels

  • A. P. S. Baghel
  • J. B. Blumenfeld
  • L. Santandrea
  • G. Krebs
  • L. DanielEmail author
Original Paper


The paper deals with the characterization and modelling of the mechanical stress dependency of magnetic losses along two orthogonal directions in non-oriented electrical steels. Significant anisotropy effects are highlighted. Using the three-term loss-separation approach, the different loss components are computed at each stress level for a wide range of frequency. Stress dependence of the core losses can be described in terms of the hysteresis and excess loss components, classical losses being assumed to be constant as a function of stress. Variations of the model coefficients with stress along the two principal directions are discussed. Such a model can be used for computing the losses in finite element analysis of rotating electrical machines or T-joint of transformers.


Core loss Loss-separation approach Mechanical stress Electrical steels 



This work is a part of the COCTEL project coordinated by RENAULT-SAS, Guyancourt, France, and funded by ADEME (French Environment and Energy Management Agency).


  1. 1.
    Bernard L, Daniel L (2015) Effect of stress on magnetic hysteresis losses in a switched reluctance motor: application to stator and rotor shrinking fitting. IEEE Trans Magn 51:7002513CrossRefGoogle Scholar
  2. 2.
    Miyagi D, Maeda N, Ozeki Y, Miki K, Takahashi N (2009) Estimation of iron loss in motor core with shrink fitting using FEM analysis. IEEE Trans Magn 45:1704–1707CrossRefGoogle Scholar
  3. 3.
    Miyagi D, Miki K, Nakano M, Takahashi N (2010) Influence of compressive stress on magnetic properties of laminated electrical steel sheets. IEEE Trans Magn 46:318–321CrossRefGoogle Scholar
  4. 4.
    Schneider CS (2005) Effect of stress on the shape of ferromagnetic hysteresis loops. J Appl Phys 97:10E503CrossRefGoogle Scholar
  5. 5.
    Perevertov O, Schäfer R (2012) Influence of applied compressive stress on the hysteresis curves and magnetic domain structure of grain-oriented transverse Fe–3%Si steel. J Phys D Appl Phys 45:135001CrossRefGoogle Scholar
  6. 6.
    Perevertov O, Schäfer R (2014) Influence of applied tensile stress on the hysteresis curve and magnetic domain structure of grain-oriented Fe–3%Si steel. J Phys D Appl Phys 47:185001CrossRefGoogle Scholar
  7. 7.
    Leuning N, Steentjes S, Schulte M, Bleck W, Hamayer K (2016) Effect of elastic and plastic tensile mechanical loading on the magnetic properties of NGO electrical steels. J Magn Magn Mater 417:42–48CrossRefGoogle Scholar
  8. 8.
    Perevertov O (2017) Influence of the applied elastic tensile and compressive stress on the hysteresis curves of Fe–3%Si non-oriented steel. J Magn Magn Mater 428:223–228CrossRefGoogle Scholar
  9. 9.
    Moses AJ (1979) Effects of applied stress on high permeability silicon-iron. IEEE Trans Magn 15:1575–1579CrossRefGoogle Scholar
  10. 10.
    Cullity BD, Graham CD (2009) Introduction to magnetic materials, 2nd edn. Wiley, New YorkGoogle Scholar
  11. 11.
    Bozorth RM (1951) Ferromagnetism. Van Nostrand, PrincetonGoogle Scholar
  12. 12.
    Mohammed O, Calvert T, McConnell R (1999) A model for magnetostriction in coupled nonlinear finite element magneto-elastic problems in electrical machines. In: Proceedings of the international conference on electric machines and drives IEMD’99Google Scholar
  13. 13.
    Belahcen A (2005) Magneto-elastic coupling in rotating electrical machines. IEEE Trans Magn 41:1624–1627CrossRefGoogle Scholar
  14. 14.
    Rasilo P, Aydin U, Singh D, Martin F, Kouhia R, Belahcen A, Arkkio A (2016) Multiaxial magneto-mechanical modelling of electrical machines with hysteresis. In: 8th IET international conference on power electronics, machines and drives (PEMD 2016), Glasgow, pp 1–6Google Scholar
  15. 15.
    Ionel DM, Popescu M, McGilp MI, Miller TJE, Dellinger SJ, Heideman RJ (2007) Computation of core losses in electrical machines using improved models for laminated steel. IEEE Trans Ind Appl 43:1554–1564CrossRefGoogle Scholar
  16. 16.
    Gracia MH, Lange E, Hameyer K (2007) Numerical calculation of iron losses in electrical machines with a modified post-processing formula. In: Proceedings of the 16th international symposium on electromagnetic fields COMPUMAG, Aachen, GermanyGoogle Scholar
  17. 17.
    Belahcen A, Dlala E, Fonteyn K, Belkasim M (2010) A posteriori iron loss computation with a vector hysteresis model: COMPEL. Int J Comput Math Electr Electron Eng 29:1493–1503CrossRefGoogle Scholar
  18. 18.
    Sablik MJ, Jiles DC (1993) Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis. IEEE Trans Magn 29:2113–2123CrossRefGoogle Scholar
  19. 19.
    Suzuki T, Matsumoto E (2005) Comparison of Jiles-Atherton and Preisach models extended to stress dependence in magnetoelastic behaviours of a ferromagnetic material. J Mater Process Technol 161:141–145CrossRefGoogle Scholar
  20. 20.
    Daniel L, Rekik M, Hubert O (2014) A multiscale model for magneto-elastic behaviour including hysteresis effects. Arch Appl Mech 84:1307–1323CrossRefGoogle Scholar
  21. 21.
    Daniel L, Hubert O, Rekik M (2015) A simplified 3D constitutive law for magneto-mechanical behavior. IEEE Trans Magn 51:7300704CrossRefGoogle Scholar
  22. 22.
    Rasilo P, Singh D, Aydin U, Martin F, Kouhia R, Belahcen A, Arkkio A (2016) Modeling of hysteresis losses in ferromagnetic laminations under mechanical stress. IEEE Trans Magn 52:7300204CrossRefGoogle Scholar
  23. 23.
    Bertotti G (1988) General properties of power losses in soft ferromagnetic materials. IEEE Trans Magn 24:621–630CrossRefGoogle Scholar
  24. 24.
    Ionel DM (2006) On the variation with flux and frequency of the core loss coefficients in electrical machines. IEEE Trans Ind Appl 42:658–667CrossRefGoogle Scholar
  25. 25.
    Krings A, Soulard J (2010) Overview and comparison of iron loss models for electrical machines. In: 5th International conference and exhibition on ecological vehicles and renewable energies (EVER 10) (Monte-Carlo-MONACO)Google Scholar
  26. 26.
    Steentjes S, Leßmann M, Hameyer K (2012) Advanced iron-loss calculation as a basis for efficiency improvement of electrical machines in automotive application. In: Electrical systems for aircraft, railway and ship propulsion (ESARS-2012), Bologna, pp 1–6Google Scholar
  27. 27.
    Steentjes S, Pfingsten G, Hombitzer M, Hameyer K (2013) Iron-loss model with consideration of minor loops applied to FE-simulations of electrical machines. IEEE Trans Magn 49:3945–3948CrossRefGoogle Scholar
  28. 28.
    Ali K, Atallah K, Howe D (1997) Prediction of mechanical stress effects on the iron loss in electrical machines. J Appl Phys 81:4119–4121CrossRefGoogle Scholar
  29. 29.
    Permiakov V, Dupré L, Pulnikov A, Melkebeek J (2004) Loss separation and parameters for hysteresis modelling under compressive and tensile stresses. J Magn Magn Mater 272–276:e553–e554CrossRefGoogle Scholar
  30. 30.
    Saeed O, Saleem A, Rahman T, Chromik R, Lowther D (2015) Iron loss models under static stress for non-oriented and grain-oriented steel. In: 20th International conference on the computation of electromagnetic fields (Compumag-2015), Montreal, QC, CanadaGoogle Scholar
  31. 31.
    Singh D, Rasilo P, Martin F, Belahcen A, Arkkio A (2015) Effect of mechanical stress on excess loss of electrical steel sheets. IEEE Trans Magn 51:1001204CrossRefGoogle Scholar
  32. 32.
    Karthaus J, Steentjes S, Leuning N, Hameyer K (2017) Effect of mechanical stress on different iron loss components up to high frequencies and magnetic flux densities: COMPEL. Int J Comput Math Electr Electron Eng 36:580–592CrossRefGoogle Scholar
  33. 33.
    Hargreaves PA, Mecrow BC, Hall R (2011) Calculation of iron losses in electrical generators using finite element analysis. In: IEEE international electrical machines & derives conference (IEMDC-2011), pp 1368–1373Google Scholar
  34. 34.
    Zirka SE, Moroz YI, Marketos P, Moses AJ, Jiles DC, Matsuo T (2008) Generalization of the classical method for calculating dynamic hysteresis loops in grain-oriented electrical steels. IEEE Trans Magn 44:2113–2126CrossRefGoogle Scholar
  35. 35.
    Bertotti G (1998) Hysteresis in magnetism. Academic, San DiegoGoogle Scholar
  36. 36.
    Rahman T, Akiror JC, Pillay P, Lowther DA (2013) Comparison of iron loss prediction formulae. In: 19th International conference on the computation of electromagnetic fields COMPUMAG-2013, Budapest, HungaryGoogle Scholar
  37. 37.
    Jiles DC, Atherton DL (1986) Theory of ferromagnetic hysteresis. J Magn Magn Mater 61:48–60CrossRefGoogle Scholar
  38. 38.
    Chen Y, Pillay P (2002) An improved formula for lamination core loss calculations in machines operating with high frequency and high flux density excitation. In: IEEE 37th IAS annual meeting conference, pp 759–766Google Scholar
  39. 39.
    Kai Y, Tsuchida Y, Todaka T, Enokizono M (2014) Influence of biaxial stress on vector magnetic properties and 2-D magnetostriction of a non-oriented electrical steel sheet under alternating magnetic flux conditions. IEEE Trans Magn 50:6100204CrossRefGoogle Scholar
  40. 40.
    Rekik M, Hubert O, Daniel L (2014) Influence of a multiaxial stress on the reversible and irreversible magnetic behavior of 3% Si–Fe alloy. Int J Appl Electromagn Mech 44:301–315CrossRefGoogle Scholar
  41. 41.
    Aydin U, Rasilo P, Martin F, Belahcen A, Daniel L, Haavisto A, Arkkio A (2019) Effect of multi-axial stress on iron losses of electrical steel sheets. J Magn Magn Mater 469:19–27CrossRefGoogle Scholar
  42. 42.
    Yamazaki K, Mukaiyama H, Daniel L (2018) Effect of multi-axial mechanical stress on loss characteristics of electrical steel sheets and interior permanent magnet machines. IEEE Trans Magn 54:1300304Google Scholar
  43. 43.
    Aydin U, Rasilo P, Martin F, Singh D, Daniel L, Belahcen A, Kouhia R, Arkkio A (2017) Modelling the effect of multiaxial stress on magnetic hysteresis of electrical steel sheets: a comparison. IEEE Trans Magn 53:2000904CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.GeePs | Group of Electrical Engineering - Paris, UMR CNRS 8507 CentraleSupélec, Univ. Paris-Sud, Univ. Paris-SaclaySorbonne UniversitéGif-sur-YvetteFrance
  2. 2.RenaultGuyancourtFrance

Personalised recommendations