Electrical Engineering

, Volume 101, Issue 3, pp 719–731 | Cite as

An alternative model for aerial multiconductor transmission lines excited by external electromagnetic fields based on the method of characteristics

  • Avisaí Sánchez-Alegría
  • Pablo MorenoEmail author
  • José R. Loo-Yau
  • Susana Ortega-Cisneros
Original Paper


In this paper, a model of aerial multiconductor transmission lines with frequency-dependent electrical parameters for the simulation of time-domain electromagnetic transients due to incident electromagnetic fields is presented. The frequency dependency of the electrical parameters is taken into account using the penetration impedance; this allows applying the method of characteristics without having to resort to modal transformations. With this alternative approach, transforming the transmission line partial differential equations to ordinary differential equations is performed in the phase domain, which simplifies the mathematical development of the method and also the numerical solution. The validity of the proposed model is shown with five study cases involving different transmission systems and excitations.


Multiconductor transmission lines External electromagnetic fields Electromagnetic transients Method of characteristics 



Mr. Avisaí Sánchez-Alegria thanks the scholarship granted by the Consejo Nacional de Ciencia y Tecnología (Grand No. CVU 569017) of México.


  1. 1.
    Taylor CD, Satterwhite RS, Harrison CW (1965) The response of a terminated two-wire transmission line excited by a nonuniform electromagnetic field. IEEE Trans Antennas Propag 13(6):987–989CrossRefGoogle Scholar
  2. 2.
    Agrawal AK, Price HJ, Gurbaxani SH (1980) Transient response of multiconductor transmission lines excited by a nonuniform electromagnetic field. IEEE Trans Electromag Compat 22(2):119–129CrossRefGoogle Scholar
  3. 3.
    Rachidi F (1993) Formulation of the field-to-transmission line coupling equations in terms of magnetic excitation fields. IEEE Trans Electromagn Compat 35(3):404–407CrossRefGoogle Scholar
  4. 4.
    Rusck S (1958) Induced lightning overvoltages on power transmission lines with special reference to the overvoltage protection of low voltage networks. Trans R Inst Technol 120:1–118Google Scholar
  5. 5.
    Chowdhuri P, Gross ETB (1967) Voltage surges induced on overhead lines by lighting strokes. Proc IEE 114(12):1899–1907Google Scholar
  6. 6.
    Cooray V (1994) Calculating lightning-induced overvoltages in power lines: a comparison of two coupling models. IEEE Trans Electromagn Compat 36(3):179–182CrossRefGoogle Scholar
  7. 7.
    Nucci CA, Rachidi F, Ianoz M, Mazzetti C (1995) Comparison of two coupling models for lightning-induced overvoltage calculations. IEEE Trans Power Deliv 10(1):330–339CrossRefGoogle Scholar
  8. 8.
    Andreotti A, Pierno A, Rakov VA (2015) A new tool for calculation of lightning-induced voltages in power systems—part I: development of circuit model. IEEE Trans Power Deliv 30(1):326–333CrossRefGoogle Scholar
  9. 9.
    Liu X, Cui X, Qi L (2012) Calculation of lightning-induced over voltages on overhead lines based on DEPACT macromodel using circuit simulation software. IEEE Trans Electromagn Compat 54(4):837–849CrossRefGoogle Scholar
  10. 10.
    Brignone M, Delfino F, Procopio R, Rossi M, Rachidi F (2017) Evaluation of power system lightning performance, part I—model and numerical solution using the PSCAD-EMTDC platform. IEEE Trans Electromagn Compat 59(1):137–145CrossRefGoogle Scholar
  11. 11.
    Abouzeid SI, Shabib G, El Dein Mohamed AZ (2015) Induced voltages on overhead transmission lines because of nearby included lightning channel. IET Gener Transm Distrib 9(13):1672–1680CrossRefGoogle Scholar
  12. 12.
    Tan EL, Yang Z (2017) Non-uniform time-step FLOD-FDTD method for multiconductor transmission lines including lumped elements. IEEE Trans Electromagn Compatib 59(6):1983–1992CrossRefGoogle Scholar
  13. 13.
    Paolone M, Nucci CA, Rachidi F (2001) A new finite difference time domain scheme for the evaluation of lightning induced overvoltage on multiconductor overhead lines. In: Proceedings of international conference on power system transaction, pp 596–602Google Scholar
  14. 14.
    Ames WF (1992) Numerical methods for partial differential equations. Academic Press, San DiegozbMATHGoogle Scholar
  15. 15.
    Ramirez A, Naredo JL, Moreno P (2005) Full frequency-dependent line model for electromagnetic transient simulation including lumped and distributed sources. IEEE Trans Power Deliv 20(1):292–299CrossRefGoogle Scholar
  16. 16.
    Garcia-Sanchez JL, Moreno P et al (2016) Aerial line model for power system electromagnetic transients simulation. IET Gener Transm Distrib 10(7):1597–1604CrossRefGoogle Scholar
  17. 17.
    Branin FH (1967) Transient analysis of lossless transmission lines. Proc IEEE 55(11):2012–2013CrossRefGoogle Scholar
  18. 18.
    Martí JT (1982) Accurate modelling of frequency-dependent transmission lines in electromagnetic transient simulations. IEEE Trans Power Appar Syst 101(1):147–157CrossRefGoogle Scholar
  19. 19.
    Morched A, Gustavsen B, Tartibi M (1999) A universal model for accurate calculation of electromagnetic transients on overhead lines and underground cables. IEEE Trans Power Deliv 14(3):1032–1038CrossRefGoogle Scholar
  20. 20.
    Moreno P, Ramirez A (2008) Implementation of the numerical Laplace transform: a review. IEEE Trans Power Deliv 23(4):2599–2609CrossRefGoogle Scholar
  21. 21.
    Nucci CA, Rachidi F, Ianoz MV (1993) Lightning-induced voltages on overhead lines. IEEE Trans Electromagn Compat 35(1):75–85CrossRefGoogle Scholar
  22. 22.
    Barbosa CF, Saldanha JO (2007) An approximate time-domain formula for the calculation of the horizontal electric field from lightning. IEEE Trans Electromagn Compat 49(3):593–601CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CINVESTAV del IPN Unidad GuadalajaraZapopanMexico

Personalised recommendations