Advertisement

Modified Peek formula for calculating positive DC corona inception voltage on polluted insulator

  • M. L. Amrani
  • S. Bouazabia
  • I. FofanaEmail author
  • F. Meghnefi
  • M. Jabbari
Original Paper
  • 12 Downloads

Abstract

In this contribution, a mathematical model is proposed to predict the discharge inception voltage on polluted insulators under a non-uniform field of a high-voltage DC system. The present study is derived from the modified Peek’s law used for predicting the threshold voltage of a typical corona discharge. An onset criterion useful for practical electrode geometries was experimentally validated by considering insulators’ level of pollution along with the electro-geometrical parameters including inter-electrode distance, HV electrode radius, and width of the ground electrode. It was observed that the proposed mathematical model is much precise for smaller electrode radii and inter-electrode distances with higher conductivity of the pollution layer. Since prediction of the electrical onset on a polluted surface is of general interest for designing HV equipment suitable for heavily polluted regions in the world, it is hoped that the results presented can be viewed as a benchmark and a challenge for further research.

Keywords

Outdoor insulation Polluted insulators Electric discharge Corona inception 

Notes

References

  1. 1.
    Venkataraman S, Gorur RS (2006) Prediction of flashover voltage of non-ceramic insulators under contaminated conditions. IEEE Trans Dielectr Elect Insul 13(4):862–869CrossRefGoogle Scholar
  2. 2.
    Ei-A Slama M, Beroual A, Hadi H (2011) Influence of the linear non-uniformity of pollution layer on the insulator flashover under impulse voltage-estimation of the effective pollution thickness. IEEE Trans Dielectr Electr Insul 18(2):384–392CrossRefGoogle Scholar
  3. 3.
    Mekhaldi A (1999) Etude des phénomènes de conduction et de décharge électrique sur des surfaces isolantes polluées sous tension alternative 50 Hz’. Thèse de Doctorat d’état, ENP, département d’électrotechnique, laboratoire de Haute Tension, Alger, ALGERIEGoogle Scholar
  4. 4.
    CIGRE Task Force 33.04.09 (1999) Influence of ice and snow on the flashover performance of outdoor insulators, part I: effects of Ice. In: Electra, vol 187, pp 91–111Google Scholar
  5. 5.
    Farzaneh M, Baker T, Bernstorf A, Burnham JT, Carreira T, Cherney E, Chisholm WA, Christman R, Cole R, Cortinas J, de Tourreil C, Drapeau JF, Farzaneh-Dehkordi J, Fikke S, Gorur R, Grisham T, Gutman I, Kuffel J, Phillips A, Powell G, Rolfseng L, Roy M, Rozek T, Ruff DL, Schwalm A, Sklenicka V, Stewart G, Sandrarajan R, Szeto M, Tay R, Zhang J (2005) Selection of station insulators with respect to ice or snow—part I: technical context and environmental exposure. A Position paper prepared by IEEE Task Force on Icing Performance of Station Insulators, IEEE Trans. Power Delivery, vol 20, pp 264–270Google Scholar
  6. 6.
    Sundararajan R, Gorur RS (1995) Computer aided design of porcelain insulators under polluted conditions. IEEE Trans Dielectr Electr Insul 2(1):121–127CrossRefGoogle Scholar
  7. 7.
    Farzaneh M, Baker AC, Bernstorf RA, Burnhan JT, Cherney EA, Chisolm WA, Fofana I, Gorur RS, Grisham T, Gutman I, Rolfseng L, Stewart GA (2007) Selection of line insulators with respect to ice and snow, part II: selection methods and mitigations options. A position paper prepared by the IEEE Task Force on icing performance of line insulators, IEEE Trans. Power Delivery, vol 22, pp 2297–2304Google Scholar
  8. 8.
    Rahal EHAM (1979) Sur les mécanismes physiques du contournement des isolateurs HT. Thèse de Doctorat en sciences physiques, université Paul Sabatier, Toulouse, FranceGoogle Scholar
  9. 9.
    Matsuo H, Fujishima T, Yamashita T (2003) Shape of contacting surface between an electrolytic solution and local discharge on it. IEEE Trans Dielectr Electr Insul 10(4):634–640CrossRefGoogle Scholar
  10. 10.
    Matsuo H, Fujishima T, Yamashita T (1996) Propagation velocity and photoemission intensity of a local discharge on an electrolytic surface. IEEE Trans Dielectr Electr Insul 3(3):444–449CrossRefGoogle Scholar
  11. 11.
    Wilkins R, Al Baghdadi AAJ (1971) Arc propagation along an electrolyte surface. Proc IEEE 118(12):1886–1892Google Scholar
  12. 12.
    Wilkins R (1969) Flashover voltage of high voltage insulators with uniform surface pollution films. Proc IEEE 116(3):457–465Google Scholar
  13. 13.
    Obenaus F (1958) Fremdschicht, ‘Uberschlag und Kriechweglange’. Deutsche Electrotechnik 2(4):135–136Google Scholar
  14. 14.
    Hampton BF (1964) Flashover mechanism of polluted insulation. Proc IEEE 11(5):985–990Google Scholar
  15. 15.
    Gohsh PS, Chakvravorti S, Chatterjee N (1995) Estimation of time to flashover characteristics of contaminated electrolytic surfaces using a neural network. IEEE Trans Dielectr Electr Insul 2(6):1064–1074CrossRefGoogle Scholar
  16. 16.
    Jolly DC (1971) Physical process in the flashover of insulators with contaminated surfaces. PhD thesis MIT, USAGoogle Scholar
  17. 17.
    Rumeli A, Hızal M, Demir Y (1981) Analytical estimation of flashover performances of polluted insulators. MADRAS 1(02):01–06Google Scholar
  18. 18.
    Nasser E (1972) Contamination flashover of outdoor insulation. ETZ-A 93:321–325Google Scholar
  19. 19.
    Von Cron H, Estorff W (1952) The HV insulator as a problem of extraneous films. In: E.T.Z, pp 1260–1266Google Scholar
  20. 20.
    Ndiaye I, Farzaneh M, Fofana I (2007) Study of the development of positive streamers along an ice surface. IEEE Trans Dielectr Electr Insul 14(6):1436–1445CrossRefGoogle Scholar
  21. 21.
    El-A Slama M (2011) Etude expérimentale et modélisation de l’influence de la constitution chimique et de la répartition de la pollution sur le contournement des isolateurs haute tension. Thèse de doctorat, Ecole Centrale de Lyon, FranceGoogle Scholar
  22. 22.
    El-A Slama M, Beroual A, Hadi H (2010) Analytical computation of discharge characteristic constants and critical parameters of flashover of polluted insulators. IEEE Trans Dielectr Electr Insul 17(6):1764–1771CrossRefGoogle Scholar
  23. 23.
    Flazi S (1987) Étude du contournement électrique des isolateurs HT pollués. Critères d’élongation de la décharge et dynamique du phénomène. Thèse de doctorat ès Sciences Physiques, Université Paul Sabatier, Toulouse, FranceGoogle Scholar
  24. 24.
    Boylett FDA, Maclean IG (1971) The propagation of electric discharges across the surface of an electrolyte. Proc R Soc Lond A 324:469–489CrossRefGoogle Scholar
  25. 25.
    Mercure HP, Drouet MG (1998) Dynamic measurements of the current distribution in the foot of an arc propagating along the surface of an electrolyte. IEEE Trans Power Appar Syst 101(3):725–736CrossRefGoogle Scholar
  26. 26.
    Brettschneider S (2000) Contribution à l’étude de I’apparition et du développement des décharges visibles à la surface de la glace. Thèse présentée à L’Université du Québec à Chicoutimi comme exigence partielle du doctorat en ingénierieGoogle Scholar
  27. 27.
    Jiang X, Xiang Z, Zhang Z, Hu J, Hu Q, Shu L (2014) AC pollution flashover performance and flashover process of glass insulators at high altitude site. IET Gener Transm Distrib 8(3):495–502Google Scholar
  28. 28.
    Tan BH, Rodrigo H, Allen NL (2008) Positive corona progression over profiled insulator surfaces near the breakdown condition. IET Sci Meas Technol 2(4):196–207CrossRefGoogle Scholar
  29. 29.
    Terrab H, Boulanouar H, Bayadi A (2018) Flashover process analysis of non-uniformly polluted insulation surface using experimental design methodology and finite element method. Electr Power Syst Res 163:581–589CrossRefGoogle Scholar
  30. 30.
    Berendta A, Budnarowskab M, Mizeraczykb J (2018) DC negative corona discharge characteristics in air flowing transversely and longitudinally through a needle-plate electrode gap. J Electrostat 92:24–30CrossRefGoogle Scholar
  31. 31.
    Kachi M, Dascalescu L (2014) Corona discharges in asymmetric electrode configurations. J Electrostat 72:6–12CrossRefGoogle Scholar
  32. 32.
    Sigmond RS, Goldman M (1981) Coronas discharge physiques and applications. Electrical Breakdown and Gas Discharge part B, E. E. Kunhardt and L. H. Luessen, United StatesGoogle Scholar
  33. 33.
    Ndiaye I, Farzaneh M, Fofana I, Srivastava KD (2005) Computer modeling of corona streamer inception on an ice surface. Annual Report Conference on Electrical Insulation and Dielectric Phenomena, pp 144–147Google Scholar
  34. 34.
    Farzaneh M, Fofana I (2004) Experimental study and analysis of corona discharge parameters on an ice surface. J Phys D Appl Phys 37:721–729CrossRefGoogle Scholar
  35. 35.
    Fofana I, Farzaneh M, Hemmatjou H, Volat C (2008) Study of discharge in air from the tip of an icicle. IEEE Trans Dielectr Electr Insul 15(3):730–740CrossRefGoogle Scholar
  36. 36.
    Farzaneh M, Fofana I, Ndiaye I, Volat C, Srivastava (2002) Corona streamer inception at an ice surface. In: IASTED international conference on power and energy systemsGoogle Scholar
  37. 37.
    Ndiaye I (2003) Study of the inception and propagation of corona discharge at an ice surface. Master Thesis University of Quebec in ChicoutimiGoogle Scholar
  38. 38.
    Volat C, Farzaneh M (2005) Three-dimensional modelling of potential and electric-field distributions along an EHV ceramic post insulator covered with ice—part II: effect of air gaps and partial arc. IEEE Trans Power Deliv 20(3):2014–2021CrossRefGoogle Scholar
  39. 39.
    Meek JM, Graggs JD (1978) Electrical breakdown of gases. Wiley, New YorkGoogle Scholar
  40. 40.
    Le Roy G, Gary C, Hutzler B, Lalot J, Dubanton C (1984) Les propriétés diélectriques de l’air et les très hautes tensions. Éditions Eyrolles, ParisGoogle Scholar
  41. 41.
    Ortéga P (1992) Comportement diélectrique des grands intervalles d’air soumis à des ondes de tension de polarité positive ou négative’, Thèse de doctorat Université de PauGoogle Scholar
  42. 42.
    Gray C, Moreau M (1976) ‘L’effet de couronne en tension alternative, EyrollesGoogle Scholar
  43. 43.
    R928 and R954 Photo multiplier Tubes Data Sheets (1997) Hamamatsu Photonics K. K., Electoron Tube Center, TPMS1001E06Google Scholar
  44. 44.
    Claverie P (1971) Predetermination of the behaviour of polluted insulators. IEEE Trans PAS 90(4):1902–1908CrossRefGoogle Scholar
  45. 45.
    Claverie P, Porcheron Y (1973) How to choose insulators for polluted areas. IEEE Trans PAS 92(3):1121–1131CrossRefGoogle Scholar
  46. 46.
    Peek FW (1929) Dielectric phenomena in high voltage engineering. McGraw-Hill, New YorkGoogle Scholar
  47. 47.
    Pelissier R (1951) ‘L’effet couronne sur les lignes aériennes. Technique de l’ingénieur, tome 1, indice D-160Google Scholar
  48. 48.
    Maudit A (1964) Installations électriques à haute et basse tension, tome 1. Dunod, ParisGoogle Scholar
  49. 49.
    Mekhaldi A, Namane D, Bouazabia S, Beroual A (1999) Flashover of discontinuous pollution layer on HV insulators. IEEE Trans Dielectr Electr Insul 6(6):900–906CrossRefGoogle Scholar
  50. 50.
    Mekhaldi A, Bouazabia S (1995) Conduction phenomena on polluted insulating surfaces under ac high voltage. In: 9th international symposium on HV engineering, paper no. 31.74, GrazGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringUniversity of Science and Technology Houari BoumedieneEl Alia, Bab EzzouarAlgeria
  2. 2.International Research Center on Atmospheric Icing and Power Network Engineering (CenGivre), Department of Applied SciencesUniversité du Québec à ChicoutimiQuebecCanada

Personalised recommendations