Frequency-domain modeling of unshielded multiconductor power cables for periodic excitation with new experimental protocol for wide band parameter identification

  • Tamiris G. BadeEmail author
  • James Roudet
  • Jean-Michel Guichon
  • Carlos A. F. Sartori
  • Patrick Kuo-Peng
  • Jean-Luc Schanen
  • Alexis Derbey
Original Paper


A complete modeling technique for unshielded power cables is proposed. The focus is on applications where the resonance phenomena take place in electrically long cables and is originated from periodic excitation, such as power converters. The resonance problems caused by switching converters tend to become more common with the advent of wide band gap semiconductors. This paper includes a new experimental protocol specific for unshielded power cable parameter identification in a wide frequency band, from DC up to medium frequencies (tens of MHz), with an impedance analyzer. It also introduces a frequency-domain simulation tool with conversion to the time domain, via the Fourier series. This frequency-domain modeling is straightforward, and its accuracy depends only on the accuracy of the cable parameter identification.


Unshielded cable Cable parameters Impedance analyzer Cable modeling Frequency domain 



The authors would like to thank Dr. Mario Leite from IPT (Institute of Technological Research, São Paulo, Brazil) for his help on measurements that contributed to this paper.


  1. 1.
    Agrawal AK, Lee K, Scott LD et al (1979) Experimental characterization of multiconductor transmission lines in the frequency domain. IEEE Trans EMC 21:28–32Google Scholar
  2. 2.
    Batura R, Opydo W (2005) Overvoltages caused by switching unloaded cable lines by a vacuum switch. Electr Eng 87(4):181–189. CrossRefGoogle Scholar
  3. 3.
    Brandão JA, das Neves MG (2011) Basic principles concerning the experimental evaluation of the frequency-dependent parameters of shielded and unshielded three-phase symmetric cables. IEEE Trans Power Deliv 26:556–564CrossRefGoogle Scholar
  4. 4.
    Chu X, Lin F, Yang Z (2014) The analysis of time-varying resonances in the power supply line of high speed trains. In: International power electronics conferenceGoogle Scholar
  5. 5.
    Clavel E, Roudet J, Guichon J et al (2018) A nonmeshing approach for modeling grounding. IEEE Trans EMC 60(3):795–802. Google Scholar
  6. 6.
    Clavel E, Roudet J, Hayashi Feuerharmel A, et al (2019) Benefits of the ground peec modeling approach—example of a residential building struck by lightning. IEEE Trans EMC. pp 1–9.
  7. 7.
    Cristina S, Feliziani M (1989) A finite element technique for multiconductor cable parameters calculation. IEEE Trans Magn 25:2986–2988CrossRefGoogle Scholar
  8. 8.
    Gao Z, Ji R, Zhang X, et al (2016) Finite-element modeling and impedance characteristics analysis of two parallel cables in aircraft power system. In: 2016 IEEE/CSAA international conference on aircraft utility systems (AUS), BeijingGoogle Scholar
  9. 9.
    Gentili GG, Salazar-Palma M (1995) The definition and computation of modal characteristic impedance in quasi-TEM coupled transmission lines. IEEE Trans Microw Theory Tech, pp 338–343Google Scholar
  10. 10.
    Gómez P, Uribe FA (2009) The numerical Laplace transform: an accurate technique for analyzing electromagnetic transients on power system devices. Int J Electr Power Energy Syst 31(2):116–123. CrossRefGoogle Scholar
  11. 11.
    Gong X, Ferreira JA (2014) Comparison and Reduction of conducted EMI in SiC JFET and Si IGBT-based motor drives. IEEE Trans Power Electron 29(4):1757–1767. CrossRefGoogle Scholar
  12. 12.
    Guo JJ, Boggs SA (2011) High frequency signal propagation in solid dielectric tape shielded power cables. IEEE Trans Power Deliv 26(3):1793–1802. CrossRefGoogle Scholar
  13. 13.
    Habib S, Kordi B (2013) Calculation of multiconductor underground cables high-frequency per-unit-length parameters using electromagnetic modal analysis. IEEE Trans Power Deliv 28:276–284CrossRefGoogle Scholar
  14. 14.
    Honarbakhsh B, Asadi S (2017) Analysis of multiconductor transmission lines using the CN-FDTD method. IEEE Trans EMC 59:184–192Google Scholar
  15. 15.
    Hosoya M (2000) The simplest equivalent circuit of a multi-terminal network. Bull Fac Sci Univ Ryukyus 70:1–10MathSciNetzbMATHGoogle Scholar
  16. 16.
    Idir N, Weens Y, Franchaud JJ (2009) Skin effect and dielectric loss models of power cables. IEEE Trans Dielectr Electr Insul 16(1):147–154. CrossRefGoogle Scholar
  17. 17.
    Kerkman RJ, Skibinski DLGL (1997) Interaction of drive modulation and cable parameters on AC motor transients. IEEE Trans Ind Appl 33(3):722–731. CrossRefGoogle Scholar
  18. 18.
    Keysight Technologies: E4990A Impedance Analyzer—Data Sheet (2018). Accessed 11 Jan 2019
  19. 19.
    Kim JH, Oh D, Kim W (2010) Accurate characterization of broadband multiconductor transmission lines for high-speed digital systems. IEEE Trans Adv Packag 33:857–867CrossRefGoogle Scholar
  20. 20.
    Knockaert J, Peuteman J, Catrysse J et al (2010) A vector impedance meter method to characterize multiconductor transmission-line parameters. IEEE Trans EMC 52:1019–1025Google Scholar
  21. 21.
    Kruizinga B, Wouters PAAF, Steennis EF (2015) High frequency modeling of a shielded four-core low voltage underground power cable. IEEE Trans Dielectr Electr Insul 22:649–656CrossRefGoogle Scholar
  22. 22.
    Marlier C, Videt A, Idir N (2015) NIF-based frequency-domain modeling method of three-wire shielded energy cables for EMC simulation. IEEE Trans EMC 57(1):145–155. Google Scholar
  23. 23.
    Moreira AF, Lipo TH, Venkataramanan G et al (2002) High-frequency modeling for cable and induction motor overvoltage studies in long cable drivers. IEEE Trans Power Electron 25:1297–1306Google Scholar
  24. 24.
    Paul C (2008) Analysis of multiconductor transmission lines. IEEE Press, New JerseyGoogle Scholar
  25. 25.
    de Paula H, de Andrade DA, Chaves MLR et al (2008) Methodology for cable modeling and simulation for high-frequency phenomena studies in pwm motor drives. IEEE Trans Power Electron 23:744–752CrossRefGoogle Scholar
  26. 26.
    Revol B, Roudet J, Schanen J et al (2011) Emi study of three-phase inverter-fed motor drives. IEEE Trans Ind Appl 47(1):223–231CrossRefGoogle Scholar
  27. 27.
    Scheich R, Roudet J, Bigot S et al (1993) Common mode RFI of a HF power converter: phenomena, its modelling and its measurement. In: EPE’93Google Scholar
  28. 28.
    Sousounis MC, Shek JKH, Mueller MA (2016) Filter design for cable overvoltage and power loss minimization in a tidal energy system with onshore converters. IEEE Trans Sustain Energy 7:400–408Google Scholar
  29. 29.
    Stevanović I, Wunsch B, Madonna GL et al (2014) High-frequency behavioral multiconductor cable modeling for emi simulations in power electronics. IEEE Trans Ind Inf 10:1392–1400CrossRefGoogle Scholar
  30. 30.
    Uribe FA, Flores J (2018) Parameter estimation of arbitrary-shape electrical cables through an image processing technique. Electr Eng 100(3):1749–1759. CrossRefGoogle Scholar
  31. 31.
    Wang L, Avolio G, Deconinck G et al (2014) Estimation of multi-conductor powerline cable parameters for the modelling of transfer characteristics. IET Sci Meas Technol 8:39–45. CrossRefGoogle Scholar
  32. 32.
    Wang L, Ho CN, Canales F et al (2010) High-frequency modeling of the long-cable-fed induction motor drive system using TLM approach for predicting overvoltage transients. IEEE Trans Power Electron 25(10):2653–2664. CrossRefGoogle Scholar
  33. 33.
    Weens Y, Idir N, Bausière R et al (2006) Modeling and simulation of unshielded and shielded energy cables in frequency and time domains. IEEE Trans Magn 44:1876–1882CrossRefGoogle Scholar
  34. 34.
    Williams DF (1997) Multiconductor transmission line characterization. IEEE Trans Compon Packag Manuf Technol 20:129–132CrossRefGoogle Scholar
  35. 35.
    Wunsch B, Stevanović I (2017) Length-scalable multi-conductor cable modeling for EMI simulations in power electronics. IEEE Trans Power Electron 32:1908–1916CrossRefGoogle Scholar
  36. 36.
    Zhang S, Jiang S, Lu X et al (2014) Resonance issues and damping techniques for grid-connected inverters with long transmission cable. IEEE Trans EMC 29:110–120Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CNRS, Grenoble INP, G2ElabUniv. Grenoble AlpesGrenobleFrance
  2. 2.Escola Politécnica da Universidade de São Paulo (PEA/EPUSP)São PauloBrazil
  3. 3.Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP)São PauloBrazil
  4. 4.GRUCADUniversity of Santa CatarinaFlorianópolisBrazil

Personalised recommendations