Ventilation system with skewed rotor cooling ducts of 40-MW synchronous machine: a case study

  • Jiri Franc
  • Roman PechanekEmail author
  • Vladimir Kindl
  • Martin Zavrel
Original Paper


This paper describes modified ventilation system and thermal analysis of low-power 40-MW turbo generator. The study compares thermal behaviour of the machine for three different arrangements of the rotor ventilation ducts. Variations of both the sub-slot and the radial ducts are analysed. The described work follows up on the ventilation calculation done in past. In particular, there are several options tested to figure out the behaviour of the numerical model. The original design ventilation part of the numerical model was tuned according to measurement. The results show advantages and disadvantages of those options and also show the way how to improve the cooling system of a turbo generator. All given theoretical results are commented and properly concluded.


Cooling Design engineering Finite element analysis Numerical analysis Turbomachinery Turbo generator 



This research has been supported by the Ministry of Education, Youth, and Sports of the Czech Republic under the RICE-New Technologies and Concepts for Smart Industrial Systems, Project No. LO1607 and by funding programme of the University of West Bohemia Number SGS-2018-009.


  1. 1.
    Popescu M, Staton DA, Boglietti A, Cavagnino A, Hawkins D, Goss J (2016) Modern heat extraction systems for power traction machines—a review. IEEE Trans Ind Appl 52(3):2167–2175CrossRefGoogle Scholar
  2. 2.
    BRUSH: Turbogenerators. Brush-sem [online]. Pilsen [cit. 2018-04-19].
  3. 3.
    Wrobel R, Staton D, Lock R, Booker J, Drury D (2014) Winding design for minimum power loss and low-cost manufacture in application to fixed-speed PM generator. In: 2014 IEEE energy conversion congress and exposition (ECCE), Pittsburgh, PA. pp 1806–1813.
  4. 4.
    Li S, Gallandat NA, Mayor Jr, Habetler T, Harley R (2018) Calculating the electromagnetic field and losses in the end region of a large synchronous generator under different operating conditions with three-dimensional transient finite element analysis. IEEE Trans Ind Appl 54:3281–3293CrossRefGoogle Scholar
  5. 5.
    Geoffriault M, Godoy E, Beauvois D, Favennec G (2013) Active reduction of vibrations in synchronous motors. In: IECON 2013—39th annual conference of the IEEE industrial electronics society, Vienna. pp 3293–3298Google Scholar
  6. 6.
    Zuo S, Lin F, Wu X (2015) Noise analysis, calculation, and reduction of external rotor permanent-magnet synchronous motor. IEEE Trans Ind Electron 62(10):6204–6212CrossRefGoogle Scholar
  7. 7.
    Almozayen MA, El-Nemr MK, Rashad EM (2018) Design procedure of coreless stator PM axial field synchronous machine for small-scale wind applications. Electr Eng 100(2):877–894CrossRefGoogle Scholar
  8. 8.
    Valenzuela MA, Tapia JA (2008) Heat transfer and thermal design of finned frames for TEFC variable-speed motors. IEEE Trans Ind Electron 55(10):3500–3508CrossRefGoogle Scholar
  9. 9.
    Boglietti A, Cavagnino A, Staton D, Shanel M, Mueller M, Mejuto C (2009) Evolution and modern approaches for thermal analysis of electrical machines. IEEE Trans Ind Electron 56(3):871–882CrossRefGoogle Scholar
  10. 10.
    Mejuto C, Mueller M, Shanel M, Mebarki A, Reekie M, Staton D (2008) Improved synchronous machine thermal modelling. In: 2008 18th International conference on electrical machines, Vilamoura. pp 1–6Google Scholar
  11. 11.
    Domingues G, Márquez-Fernández FJ, Fyhr P, Reinap A, Andersson M, Alaküla M (2017) Scalable performance, efficiency and thermal models for electric drive components used in powertrain simulation and optimization. In: 2017 IEEE transportation electrification conference and expo (ITEC), Chicago, IL. pp 644–649.
  12. 12.
    Goss J, Wrobel R, Mellor P, Staton D (2013) The design of AC permanent magnet motors for electric vehicles: a design methodology. In: 2013 International electric machines and drives conference, Chicago, IL. pp 871–878.
  13. 13.
    Ruoho S, Kolehmainen J, Ikaheimo J, Arkkio A (2010) Interdependence of demagnetization, loading, and temperature rise in a permanent-magnet synchronous motor. IEEE Trans Magn 46(3):949–953CrossRefGoogle Scholar
  14. 14.
    Wang L, Li W, Chen W (2016) Transient thermal variation in stator winding of nuclear power turbo-generator with the inner sudden water brake. IET Sci Measur Technol 10(7):728–736CrossRefGoogle Scholar
  15. 15.
    Roshanfekr P, Lundmark S, Thiringer T, Alatalo M (2014) A synchronous reluctance generator for a wind application-compared with an interior mounted permanent magnet synchronous generator. In: 7th IET international conference on power electronics, machines and drives (PEMD 2014), Manchester. pp 1–5.
  16. 16.
    Stumberger B, Seme S, Praunseis Z, Hadziselimovic M (2017) Electromagnetic and thermal design of totally enclosed non-ventilated synchronous generator with interior permanent magnets. In: 2017 International conference on modern electrical and energy systems (MEES), Kremenchuk. pp 160–163.
  17. 17.
    Hussain A, Kwon B (2018) A new brushless wound rotor synchronous machine using a special stator winding arrangement. Electr Eng 100(3):1797–1804CrossRefGoogle Scholar
  18. 18.
    Nategh S, Huang Z, Krings A, Wallmark O, Leksell M (2013) Thermal modeling of directly cooled electric machines using lumped parameter and limited CFD analysis. IEEE Trans Energy Convers 28(4):979–990CrossRefGoogle Scholar
  19. 19.
    Wallscheid O, Böcker J (2016) Global identification of a low-order lumped-parameter thermal network for permanent magnet synchronous motors. IEEE Trans Energy Convers 31(1):354–365CrossRefGoogle Scholar
  20. 20.
    Ponomarev P, Polikarpova M, Pyrhönen J (2012) Thermal modeling of directly-oil-cooled permanent magnet synchronous machine. In: 2012 XXth international conference on electrical machines, Marseille. pp 1882–1887Google Scholar
  21. 21.
    Oner Y, Şenol İ (2016) Lumped parameter method of permanent magnet synchronous generator for wind energy. Electr Eng 98(2):169–177. CrossRefGoogle Scholar
  22. 22.
    Chen Y, Yao Y, Lu Q, Ye Y, Huang X (2015) Electromagnetic and thermal coupling analysis of a water-cooled double-sided permanent magnet linear synchronous motor. In: 2015 18th International conference on electrical machines and systems (ICEMS), Pattaya. pp 1136–1140Google Scholar
  23. 23.
    Jiang W, Jahns TM (2015) Coupled electromagnetic–thermal analysis of electric machines including transient operation based on finite-element techniques. IEEE Trans Ind Appl 51(2):1880–1889CrossRefGoogle Scholar
  24. 24.
    Haţiegan C, Padureanu I, Jurcu MR et al (2017) The evaluation of the insulation performances of the stator coil for the high power vertical synchronous hydro-generators by monitoring the level of partial discharges. Electr Eng 99(3):1013–1020CrossRefGoogle Scholar
  25. 25.
    Vaimann T, Kallaste A, Bolgov V, Belahcen A (2015) Environmental considerations in lifecycle based optimization of electrical machines. In: 2015 16th International scientific conference on electric power engineering (EPE), Kouty nad Desnou. pp 209–214.
  26. 26.
    Sahoo S, Rodriguez P, Sulowicz M (2017) Evaluation of different monitoring parameters for synchronous machine fault diagnostics. Electr Eng 99(2):551–560CrossRefGoogle Scholar
  27. 27.
    Lu Y, Yin W, Chen P, Li W (2008) Mechanism research on air mass flow rate distribution in rotor radial ducts of turbo generator with sub-slot ventilation. In: 2008 World automation congress, Hawaii, HI. pp 1–5Google Scholar
  28. 28.
    Malumbres JA, Satrustegui M, Elosegui I, Martínez-Iturralde M (2015) Coupled thermal and hydraulic algebraic models for an open self-ventilated induction machine. IET Electr Power Appl 9(8):513–522. CrossRefGoogle Scholar
  29. 29.
    Weili L, Feng Z, Liming C (1998) Calculation of rotor ventilation and heat for turbo-generator radial and tangential air-cooling system. In: 1998 International conference on power system technology, 1998. Proceedings. POWERCON ‘98, Beijing, vol 2. pp 1030–1033.
  30. 30.
    Huei-Huang LEE (2014) Finite element simulations with ANSYS workbench 15. SDC, Mission, p 602. ISBN 978-1-58503-907-4Google Scholar
  31. 31.
    Alawadhi EM (2010) Finite element simulations using ANSYS. CRC Press, Boca Raton, p 408. ISBN 978-1-4398-0160-4Google Scholar
  32. 32.
    Franc J, Pechanek R, Kindl V (2016) Optimisation of ventilation system of the air-cooled turbo generator. In: 2016 17th International conference on mechatronics—mechatronika (ME), Prague. pp 1–5Google Scholar
  33. 33.
    Franc J, Pechanek R (2018) Analysis of rotor ventilation system of air cooled synchronous machine through computational fluid dynamics. In: Březina T, Jabłoński R (eds) Mechatronics 2017. MECHATRONICS 2017. Advances in intelligent systems and computing, vol 644. Springer, ChamGoogle Scholar
  34. 34.
    Löhner R (2008) Applied computational fluid dynamics techniques: an introduction based on finite element methods, 2nd edn. Wiley, Chichester, p 519. ISBN 978-0-470-51907-3CrossRefzbMATHGoogle Scholar
  35. 35.
    Jaluria Y, Torrance KE (2003) Computational heat transfer. Series in computational methods in mechanics and thermal sciences, 2nd edn. Taylor & Francis, New York, p 544. ISBN 978-1-56032-477-5Google Scholar
  36. 36.
    Nollau A, Gerling D (2015) A flux barrier cooling for traction motors in hybrid drives. In: 2015 IEEE international electric machines and drives conference (IEMDC), Coeur d’Alene, ID. pp 1103–1108.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Brush SEM s.r.o.PlzeňCzech Republic
  2. 2.Faculty of Electrical Engineering, Regional Innovation Centre for Electrical Engineering (RICE)University of West Bohemia, Univerzitní 8PlzeňCzech Republic

Personalised recommendations