Advertisement

Device ensuring effective usage of photovoltaics for water heating

  • Mečys Palšauskas
  • Gintautas Baliukonis
  • Algirdas JasinskasEmail author
  • Antanas Pocius
Original Paper
  • 47 Downloads

Abstract

The integration of photovoltaic devices (PV) into the network could ensure the efficient use of solar energy. Nevertheless, when using PV systems for water heating, the main problem arises: if a heating element is directly connected to a solar module without using a device that regulates the supply of electric energy to the electric heating element in the boiler, the usage of photoelectric module becomes inefficient. When solar raying is small, the module current becomes equal to the current of the short circuit and the decrease in voltage in the heating element reduces the voltage in the solar module to almost zero. Therefore, it is not advisable to connect solar modules directly to electric heating elements. This study presents Nectar Sun—a device that provides the necessary connection. Nectar Sun is a DC to DA converter, which operates on the basis of a micro-switch, uses maximum power point tracking technology and regulates the supply of electricity to the heating element by pulse-width modulation. These qualities highly improve the characteristics of PV systems. When lighting is equal to 400 W/m2, without Nectar Sun regulator, the voltage of one module will approximately be 22 V, current—3.4 A and power—75 W. When Nectar Sun controller is added, it produces maximum power point (MPP) regime with Umax ≈ 30 V, Imax ≈ 3.2 A and Pmax ≈ 96 W. The usage of PV module power in this point is 100%. The maximum power under lighting 800 W/m2 is about 190 W. The usage of PV module power in this point is equal to about 90%. Electric heating elements under 220 V are 1.5 kW, 2 kW and 3 kW PE (nominal power), with Umax ≈ 124 V (total voltage of four PV modules in the MPP) which will accordingly be 480 W, 640 W and 1120 W PE power. Each PV module gets 1/4 of this power, which is equal to 50%, 65% and 115% of its Pmax. The power graph of Nectar Sun regulator shows two operational regimes of the device: with 4 PV modules (maximum power about 540 W) and 6 PV modules (maximum power about 860 W). Nectar Sun quickly finds the MPP of PV modules and keeps it stable under different lighting conditions. Under real conditions, the boiler temperature graph is proportional to the power graph. In the system with four PV modules, the maximum water temperature does not exceed 58 °C. In the system with six PV modules, the maximum boiler water temperature increases by an average of 10 °C. Thus, the energy generated by PV modules is effectively supplied to the electric heating element. Additionally, Nectar Sun provides independent water temperature control during the day; it automatically connects to the power supply under insufficient sunlight. This guarantees normal boiler operation regardless of environmental conditions throughout the year.

Keywords

Solar water heater Photovoltaic system Electric boiler Solar energy efficiency Energy optimization 

Notes

References

  1. 1.
    Allouhi A, El Fouih Y, Kousksou T, Jamil A, Zeraouli Y, Mourad Y (2015) Energy consumption and efficiency in buildings: current status and future trends. J Clean Prod 109:118–130.  https://doi.org/10.1016/j.jclepro.2015.05.139 CrossRefGoogle Scholar
  2. 2.
    Lam HL, Varbanov PS, Klemes JJ (2016) Green applied energy for sustainable development. Appl Energy 161:601–604.  https://doi.org/10.1016/j.apenergy.2015.10.084 CrossRefGoogle Scholar
  3. 3.
    Graber S, Narayanan T, Alfaro J, Palit D (2018) Solar microgrids in rural India: consumers’ willingness to pay for attributes of electricity. Energy Sustain Dev 42:32–43.  https://doi.org/10.1016/j.esd.2017.10.002 CrossRefGoogle Scholar
  4. 4.
    RES Scenario to 2040, half of the Global Energy Suply from Renewables in 2040 (2015). http://www.erec-renewables.org/documents/targets_2040/EREC_Scenario202040.pgf/. Accessed 28 May 2018
  5. 5.
    Bloem H, Monforti-Ferrario F, Jager-Waldau A (2010) Renewable energy snapshots 2010, European Commission, DG Joint Researche Centre, EUR 24440Google Scholar
  6. 6.
    Sadauskiene J, Seduikyte L, Paukstys V, Banionis K, Gailius A (2016) The role of air tightness in assessment of building energy performance: case study of Lithuania. Energy Sustain Dev 32:31–39.  https://doi.org/10.1016/j.esd.2016.02.006 CrossRefGoogle Scholar
  7. 7.
    Valancius K, Motuziene V, Paulauskaite S (2015) Redeveloping industrial buildings for residential use: energy and thermal comfort aspects. Energy Sustain Dev 29:38–46.  https://doi.org/10.1016/j.esd.2015.09.004 CrossRefGoogle Scholar
  8. 8.
    Breivik Ch, Jell B, Time B, Holmberget Q, Vygaro J, Bergheim E, Dalenhaug A (2013) Large-scale experimental wind-driven rain exposure investigations of building integrated photovoltaics. Solar Energy 90:179–187CrossRefGoogle Scholar
  9. 9.
    Rahman A, Smith AD, Fumo N (2016) Performance modeling and parametric study of a stratified water thermal storage tank. Appl Therm Eng 100:668–679.  https://doi.org/10.1016/j.applthermaleng.2016.01.163 CrossRefGoogle Scholar
  10. 10.
    Tanha K, Fung AS, Kumar R (2015) Performance of two domestic solar water heaters with drain water heat recovery units: simulation and experimental investigation. Appl Therm Eng 90:444–459.  https://doi.org/10.1016/j.applthermaleng.2015.07.038 CrossRefGoogle Scholar
  11. 11.
    Fuentes-Cortes LF, Avila-Hermandez A, Sema-Gonzalez M, Ponce-Ortega JM (2015) Optimal design of CHP systems for housing complexes involving weather and electric market variations. Appl Therm Eng 90:895–906.  https://doi.org/10.1016/j.applthermaleng.2015.07.074 CrossRefGoogle Scholar
  12. 12.
    Wittbrodt B, Pearce JM (2017) 3-D printing solar photovoltaic racking in developing world. Energy Sustain Dev 36:1–5.  https://doi.org/10.1016/j.esd.2016.08.001 CrossRefGoogle Scholar
  13. 13.
    Janssen R (2004) Towards energy efficient buildings in Europe. Final report, European Alliance of Companies for Energy Efficiency BuildingsGoogle Scholar
  14. 14.
    Lillo P, Ferrer-Martí L, Fernández-Baldor A, Ramírez B (2015) A new integral management model and evaluation method to enhance sustainability of renewable energy projects for energy and sanitation services. Energy Sustain Dev 29:1–12.  https://doi.org/10.1016/j.esd.2015.08.003 CrossRefGoogle Scholar
  15. 15.
    Dereli Z, Yucedag C, Pearce JM (2013) Simple and low-cost method of planning for free growth and lifetime effects on solar photovoltaic system performance. Sol Energy 95:300–307.  https://doi.org/10.1016/j.solener.2013.06.019 CrossRefGoogle Scholar
  16. 16.
    Roberts DA (2013) A figure of merit for selective absorbers in flat plate solar water heaters. Sol Energy 98:503–510.  https://doi.org/10.1016/j.solener.2013.10.012 CrossRefGoogle Scholar
  17. 17.
    Nhut LM, Park YC (2013) A study on automatic optimal operation of a pump for solar domestic hot water system. Sol Energy 98:448–457.  https://doi.org/10.1016/j.solener.2013.08.040 CrossRefGoogle Scholar
  18. 18.
    Panaras G, Mathioulakis E, Belessiotis V (2013) Investigation of the performance of a combined solar thermal heat pump hot water system. Sol Energy 93:169–182.  https://doi.org/10.1016/j.solener.2013.03.027 CrossRefGoogle Scholar
  19. 19.
    Facao J, Carvalho MJ (2014) New test methodologies to analyse direct expansion solar assisted heat pumps for domestic hot water. Sol Energy 100:66–75.  https://doi.org/10.1016/j.solener.2013.11.025 CrossRefGoogle Scholar
  20. 20.
    Mattei M, Notton G, Cristofari C, Muselli M, Poggi P (2006) Calculation of the polycrystalline PV module temperature using a simple method of energy balance. Renew Energy 31:553–567.  https://doi.org/10.1016/j.renene.2005.03.010 CrossRefGoogle Scholar
  21. 21.
    Garcia A, Balenzategui JL (2004) Estimation of photovoltaic module yearly temperature and performance based on nominal operation cell temperature. Renew Energy 29:1997–2010.  https://doi.org/10.1016/j.renene.2004.03.010 CrossRefGoogle Scholar
  22. 22.
    Dakkak M, Babeli A (2012) Design and performance study of a PV tracking system (100 W–24 Vdc/220 Vac). Energy Procedia 19:91–95.  https://doi.org/10.1016/j.egypro.2012.05.188 CrossRefGoogle Scholar
  23. 23.
    Rustemli S, Dincer F, Unal E, Karaaslan M, Sabah S (2013) The analysis on sun tracking and cooling systems for photovoltaic panels. Renew Sustain Energy Rev 22:598–603.  https://doi.org/10.1016/j.rser.2013.02.014 CrossRefGoogle Scholar
  24. 24.
    Skoplaki E, Palyvos JA (2009) On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations. Sol Energy 83(5):614–624.  https://doi.org/10.1016/j.solener.2008.10.008 CrossRefGoogle Scholar
  25. 25.
    Appleyard D (2010) PV global outlook: a bright future shines on PV. Renewable Energy World. http://www.renewableenergyworld.com/rea/news/. Accessed 4 June 2018
  26. 26.
    Wanxiang Y, Zhengrong L, Tongbin X, Yuan L, Xiaobin L (2015) New decomposition models to estimate hourly global solar radiation from the daily value. Sol Energy 120:87–99.  https://doi.org/10.1016/j.solener.2015.05.038 CrossRefGoogle Scholar
  27. 27.
    Roy JN (2015) Modelling of insulation characteristics of solar photovoltaic (SPV) modules. Sol Energy 120:1–8.  https://doi.org/10.1016/j.solener.2015.06.036 CrossRefGoogle Scholar
  28. 28.
    Al-Kayiem HH, Lin C (2014) Performance evaluation of a solar water heater integrated with a PCM nanocomposite TES at various inclinations. Sol Energy 109:82–92.  https://doi.org/10.1016/j.solener.2014.08.021 CrossRefGoogle Scholar
  29. 29.
    Ishaque K, Salam Z (2013) A review of maximum power point tracking techniques of PV system for uniform insolation and partial shading condition. Renew Sustain Energy Rev 19:475–488.  https://doi.org/10.1016/j.rser.2012.11.032 CrossRefGoogle Scholar
  30. 30.
    Rezk H, Fathy A (2017) Simulation of global MPPT based on teaching–learning-based optimization technique for partially shaded PV system. Electr Eng 99:847–859.  https://doi.org/10.1007/s00202-016-0449-3 CrossRefGoogle Scholar
  31. 31.
    Belkaid A, Colak I, Kayisli K (2017) Implementation of a modified P&O-MPPT algorithm adapted for varying solar radiation conditions. Electr Eng 99:839–846.  https://doi.org/10.1007/s00202-016-0457-3 CrossRefGoogle Scholar
  32. 32.
    Dehghanzadeh A, Farahani G, Vahedi H, Al-Haddad K (2018) Model predictive control design for DC–DC converters applied to a photovoltaic system. Int J Electr Power Energy Syst 103:537–544.  https://doi.org/10.1016/j.ijepes.2018.05.004 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mečys Palšauskas
    • 1
  • Gintautas Baliukonis
    • 2
  • Algirdas Jasinskas
    • 1
    Email author
  • Antanas Pocius
    • 1
  1. 1.Institute of Agricultural Engineering and SafetyVytautas Magnus UniversityKaunasLithuania
  2. 2.Joint Stock Company “Saules graza”VilniusLithuania

Personalised recommendations