Advertisement

LCD codes from weighing matrices

  • Dean Crnković
  • Ronan Egan
  • B. G. Rodrigues
  • Andrea ŠvobEmail author
Original Paper
  • 41 Downloads

Abstract

Linear codes with complementary duals are linear codes whose intersection with their duals are trivial, shortly named LCD codes. In this paper we outline a construction for LCD codes over finite fields of order q using weighing matrices and their orbit matrices. The LCD codes constructed can be of any length dimension according to the choice of matrices used in their construction. As a special case, LCD codes of length 2n and dimension n are constructed which also have the property of being formally self-dual. Alternatively, under a condition depending on q that the codes are not LCD, this method constructs self-dual codes. To illustrate the method we construct LCD codes from weighing matrices, including the Paley conference matrices and Hadamard matrices. We also extend the construction to Hermitian LCD codes over the finite field of order 4. In addition, we propose a decoding algorithm that can be feasible for the LCD codes obtained from some of the given methods.

Keywords

Weighing matrix Orbit matrix LCD code 

Mathematics Subject Classification

05B20 05B30 94B05 12E20 

Notes

Acknowledgements

D. Crnković and A. Švob were supported by Croatian Science Foundation under the project 6732. R. Egan was supported by the Irish Research Council (Government of Ireland Postdoctoral Fellowship, GOIPD/2018/304). B. G. Rodrigues work is based on the research supported by the National Research Foundation of South Africa (Grant Nos. 95725 and 106071). B. G. Rodrigues acknowledges support from the Erasmus Mundus Plus academic exchange programme to visit the University of Rijeka in 2018.

References

  1. 1.
    Alahmadi, A., Deza, M., Sikirić, M.D., Solé, P.: The joint weight enumerator of an LCD code and its dual. Discrete Appl. Math. 257, 12–18 (2019)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Araya, M., Harada, M.: On the classification of linear complementary dual codes. Discrete Math. 342, 270–278 (2019)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bosma, W., Cannon, J.: Handbook of Magma Functions. Department of Mathematics, University of Sydney, Camperdown (1994)zbMATHGoogle Scholar
  4. 4.
    Carlet, C., Guilley, S.: Complementary dual codes for counter-measures to side-channel attacks. Adv. Math. Commun. 10, 131–150 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Carlet, C., Mesnager, S., Tang, C., Qi, Y.: Linear codes over \({{\mathbb{F}}_q}\) are equivalent to LCD codes for \(q > 3\). IEEE Trans. Inform. Theory 64, 3010–3017 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Carlet, C., Mesnager, S., Tang, C., Qi, Y.: Euclidean and Hermitian LCD MDS codes. Des. Codes Cryptogr. 86(11), 2605–2618 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Craigen, R., Georgiou, S., Gibson, W., Koukouvinos, C.: Further explorations into ternary complementary pairs. J. Combin. Theory Ser. A 113(6), 952–965 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Crnković, D.: A series of Siamese twin designs intersecting in a \(BIBD\) and a \(PBD\). Australas. J. Comb. 41, 139–145 (2008)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Crnković, D., Egan, R., Švob, A.: Orbit matrices of Hadamard matrices and related codes. Discrete Math. 341, 1199–1209 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Crnković, D., Egan, R., Švob, A.: Constructing self-orthogonal and Hermitian self-orthogonal codes via weighing matrices and orbit matrices. Finite Fields Appl. 55, 64–77 (2019)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Crnković, D., Rodrigues, B.G., Rukavina, S., Simčić, L.: Self-orthogonal codes from orbit matrices of 2-designs. Adv. Math. Commun. 7, 161–174 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dougherty, S.T., Kim, J.-L., Ozkaya, B., Sok, L., Solé, P.: The combinatorics of LCD codes: Linear Programming bound and orthogonal matrices. Int. J. Inf. Coding Theory 4, 116–128 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes. http://www.codetables.de. Accessed 24 Aug 2019
  14. 14.
    Harada, M., Munemasa, A.: On the classification of self-dual [20,10,9] codes over GF(7). Finite Fields Appl. 42, 57–66 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Harada, M., Saito, K.: Binary linear complementary dual codes. Cryptogr. Commun. 11, 677–696 (2019)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Harada, M., Tonchev, V.: Self-orthogonal codes from symmetric designs with fixed-point-free automorphisms. In: The 2000 \(\text{Com}^2\text{ MaC }\) Conference on Association Schemes, Codes and Designs (Pohang), Discrete Math. 264, 81–90 (2003)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  18. 18.
    Ionin, Y.J., Kharaghani, H.: Balanced generalized weighing matrices and conference matrices. In: Colbourn, C.J., Dinitz, J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn, pp. 110–124. Chapman & Hall/CRC, Boca Raton (2007)Google Scholar
  19. 19.
    Janko, Z.: The existence of a Bush-type Hadamard matrix of order 36 and two new infinite classes of symmetric designs. J. Combin. Theory Ser. A 95, 360–364 (2001)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Janko, Z., Kharaghani, H., Tonchev, V.D.: Bush-type Hadamard matrices and symmetric designs. J. Combin. Des. 9, 72–78 (2001)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Key, J.D., Rodrigues, B.G.: Special LCD codes from Peisert and generalized Peisert graphs. Graphs Combin. 35, 633–652 (2019)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kennedy, G.T., Pless, V.: On designs and formally self-dual codes. Des. Codes Cryptogr. 4, 43–55 (1994)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Massey, J.L.: Linear codes with complementary duals. Discrete Math. 106(107), 337–342 (1992)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Paley, R.E.A.C.: On orthogonal matrices. J. Math. Phys. 12, 311–320 (1933)CrossRefGoogle Scholar
  25. 25.
    Seberry, J.: Orthogonal Designs: Hadamard Matrices, Quadratic Forms and Algebras. Springer International Publishing AG, Cham (2017)CrossRefGoogle Scholar
  26. 26.
    Sendrier, N.: Linear codes with complementary duals meet the Gilbert–Varshamov bound. Discrete Math. 304, 345–347 (2004)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Sok, L., Shi, M., Solé, P.: Constructions of optimal LCD codes over large finite fields. Finite Fields Appl. 50, 138–153 (2018)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Tonchev, V.D.: Generalized weighing matrices and self-orthogonal codes. Discrete Math. 309(14), 4697–4699 (2009)MathSciNetCrossRefGoogle Scholar
  29. 29.
    van Rees, G.H.J.: \((r,\lambda )\)-designs. In: Colbourn, C.J., Dinitz, J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn, pp. 582–584. Chapman & Hall/CRC, Boca Raton (2007)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of RijekaRijekaCroatia
  2. 2.School of Mathematics, Statistics and Applied MathematicsNational University of Ireland, GalwayGalwayIreland
  3. 3.School of Mathematics, Statistics and Computer ScienceUniversity of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations