Advertisement

On extremal double circulant self-dual codes of lengths 90–96

  • T. Aaron Gulliver
  • Masaaki HaradaEmail author
Original Paper
  • 4 Downloads

Abstract

A classification of extremal double circulant self-dual codes of lengths up to 88 is known. We extend this classification to length 96. We give a classification of extremal double circulant self-dual codes of lengths 90, 92, 94 and 96. We also classify double circulant self-dual codes with parameters [90, 45, 14] and [96, 48, 16]. In addition, we demonstrate that no double circulant self-dual [90, 45, 14] code has an extremal self-dual neighbor, and no double circulant self-dual [96, 48, 16] code has a self-dual neighbor with minimum weight at least 18.

Keywords

Self-dual code Double circulant code Extremal self-dual code 

Notes

Acknowledgements

The authors would like to thank Alfred Wassermann for his useful private communication. This work was supported by JSPS KAKENHI Grant Number 15H03633.

References

  1. 1.
    Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: the user language. J. Symb. Comput. 24, 235–265 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chigira, N., Harada, M., Kitazume, M.: Extremal self-dual codes of length 64 through neighbors and covering radii. Des. Codes Cryptogr. 42, 93–101 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Conway, J.H., Sloane, N.J.A.: A new upper bound on the minimal distance of self-dual codes. IEEE Trans. Inform. Theory 36, 1319–1333 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dontcheva, R., Russeva, R., Ziapkov, N.: On the binary extremal codes of length 92. In: Proceedings of International Workshop Optimal Codes and Related Topics, Sunny Beach, Bulgaria, pp. 53–58 (2001)Google Scholar
  5. 5.
    Dougherty, S.T., Gulliver, T.A., Harada, M.: Extremal binary self-dual codes. IEEE Trans. Inform. Theory 43, 2036–2047 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gaborit, P., Otmani, A.: Experimental constructions of self-dual codes. Finite Fields Appl. 9, 372–394 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gaborit, P., Pless, V., Solé, P., Atkin, O.: Type II codes over \(\mathbb{F}_4\). Finite Fields Appl. 8, 171–183 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gulliver, T.A., Harada, M.: Weight enumerators of double circulant codes and new extremal self-dual codes. Des. Codes Cryptogr. 11, 141–150 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gulliver, T.A., Harada, M.: Classification of extremal double circulant self-dual codes of lengths 64 to 72. Des. Codes Cryptogr. 13, 257–269 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gulliver, T.A., Harada, M.: Classification of extremal double circulant self-dual codes of lengths 74–88. Discrete Math. 306, 2064–2072 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gulliver, T.A., Senkevitch, N.: On a class of self-dual codes derived from quadratic residues. IEEE Trans. Inform. Theory 45, 701–702 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Harada, M., Gulliver, T.A., Kaneta, H.: Classification of extremal double-circulant self-dual codes of length up to 62. Discrete Math. 188, 127–136 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Harada, M., Kiermaier, M., Wassermann, A., Yorgova, R.: New binary singly even self-dual codes. IEEE Trans. Inform. Theory 56, 1612–1617 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Harada, M., Nishimura, T.: An extremal singly even self-dual code of length 88. Adv. Math. Commun. 1, 261–267 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Mallows, C.L., Sloane, N.J.A.: An upper bound for self-dual codes. Inform. Control 22, 188–200 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Moore, E.H.: Double circulant codes and related structures, Ph.D. dissertation. Dartmouth College, Hanover, NH (1976)Google Scholar
  17. 17.
    Yorgova, R.: Binary self-dual extremal codes of length 92. In: Proceedings of IEEE International Symposium on Information Theory, Seattle, WA, pp. 1292–1295 (2006)Google Scholar
  18. 18.
    Yorgova, R., Wassermann, A.: Binary self-dual codes with automorphisms of order 23. Des. Codes Cryptogr. 48, 155–164 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of VictoriaVictoriaCanada
  2. 2.Research Center for Pure and Applied Mathematics, Graduate School of Information SciencesTohoku UniversitySendaiJapan

Personalised recommendations