Advertisement

New quadratic bent functions in polynomial forms with coefficients in extension fields

  • Dongmei Huang
  • Chunming TangEmail author
  • Yanfeng Qi
  • Maozhi Xu
Original Paper
  • 85 Downloads

Abstract

In this paper, we first discuss the bentness of a large class of quadratic Boolean functions in polynomial form \(f(x)=\sum _{i=1}^{{n}/{2}-1}\mathrm {Tr}^n_1(c_ix^{1+2^i})+ \mathrm {Tr}_1^{n/2}(c_{n/2}x^{1+2^{n/2}})\), where n is even, \(c_i\in \mathrm {GF}(2^n)\) for \(1\le i \le {n}/{2}-1\) and \(c_{n/2}\in \mathrm {GF}(2^{n/2})\). The bentness of these functions can be connected with linearized permutation polynomials. Hence, methods for constructing quadratic bent functions are given. Further, we consider a subclass of quadratic Boolean functions of the form \(f(x)=\sum _{i=1}^{{m}/{2}-1}\mathrm {Tr}^n_1(c_ix^{1+2^{ei}})+ \mathrm {Tr}_1^{n/2}(c_{m/2}x^{1+2^{n/2}})\), where \(n=em\), m is even, and \(c_i\in \mathrm {GF}(2^e)\). The bentness of these functions is characterized and some methods for deriving new quadratic bent functions are given. Finally, when m and e satisfy some conditions, we determine the number of these quadratic bent functions.

Keywords

Bent function Boolean function Linearized permutation polynomial Cyclotomic polynomial Semi-bent function 

Mathematics Subject Classification

06E75 94A60 

Notes

Acknowledgements

The authors are very grateful to the anonymous reviewers and Prof. Teo Mora for their valuable comments and suggestions. This work is supported by the National Natural Science Foundation of China (Grant Nos. 11871058, 11531002, 11701129, 61672059). C. Tang also acknowledges support from 14E013, CXTD2014-4 and the Meritocracy Research Funds of China West Normal University. Y. Qi also acknowledges support from Zhejiang provincial Natural Science Foundation of China (LQ17A010008, LQ16A010005).

References

  1. 1.
    Berlekamp, E.R.: Algebraic Coding Theory, revised edn. Aegean Park, Laguna Hills (1984)zbMATHGoogle Scholar
  2. 2.
    Boztas, S., Kumar, P.V.: Binary sequences with Gold-like correlation but larger linear span. IEEE Trans. Inf. Theory 40, 532–537 (1994)CrossRefzbMATHGoogle Scholar
  3. 3.
    Canteaut, A., Charpin, P.: Decomposing bent functions. IEEE Trans. Inf. Theory 49(8), 2004–2019 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Carlet, C.: A larger class of cryptographic Boolean functions via a study of the Maiorana–McFarland construction. In: Yung, M. (ed.) Advances in Cryptology-CRYPTO 2002. Lecture Notes in Computer Science, vol. 2442, pp. 549–564. Springer, Berlin (2002)CrossRefGoogle Scholar
  5. 5.
    Carlet, C., Charpin, P., Zinoviev, V.A.: Codes, bent functions and permutations suitable for DES-like cryptosystem. Des. Codes. Cryptogr. 15, 125–156 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Charpin, P., Pasalic, E., Tavernier, C.: On bent and semi-bent quadratic Boolean functions. IEEE Trans. Inf. Theory 51(12), 4286–4298 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dobbertin, H., Leander, G., Canteaut, A., Carlet, C., Felke, P., Gaborit, P.: Construction of bent functions via Niho power functions. J. Comb. Theory, Ser. A 113, 779–798 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gold, R.: Maximal recursive sequences with 3-valued recursive crosscorrelation functions. IEEE Trans. Inf. Theory 14(1), 154–156 (1968)CrossRefzbMATHGoogle Scholar
  9. 9.
    Golomb, S.W., Gong, G.: Signal Design for Good Correlation: for Wireless Communication, Cryptography and Radar. Cambridge University Press, Cambridge (2005)CrossRefzbMATHGoogle Scholar
  10. 10.
    Hu, H., Feng, D.: On quadratic bent functions in polynomial forms. IEEE Trans. Inf. Theory 53(7), 2610–2615 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Helleseth, T., Kumar, P.V.: Sequences with low correlation. In: Pless, V.S., Huffman, W.C. (eds.) Handbook of Coding Theory, vol. 2, pp. 1765–1853. North-Holland, Amsterdam (1998)Google Scholar
  12. 12.
    Leander, G.: Monomial bent functions. IEEE Trans. Inf. Theory 52(2), 738–743 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lidl, R., Niederreiter, H.: Finite fields. In: Lidl, R., Niederreiter, H., Cohn, P.M. (eds.).). Encyclopedia of Mathematics and Its Applications, 20th edn. Addison-Wesley, Reading (1983)Google Scholar
  14. 14.
    Khoo, K., Gong, G., Stinson, D.R.: A new family of Gold-like sequences. In: Proceedings of IEEE International Symposium Information Theory, Lausanne, Switzerland, p. 181 (2002)Google Scholar
  15. 15.
    Khoo, K., Gong, G., Stinson, D.R.: A new characterization of semi-bent and bent functions on finite fields. Des. Codes. Cryptogr. 38(2), 279–295 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kim, S.H., No, J.S.: New families of binary sequences with low correlation. IEEE Trans. Inf. Theory 49(11), 3059–3065 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lempel, A., Cohn, M.: Maximal families of bent sequences. IEEE Trans. Inf. Theory 28, 865–868 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Ma, W., Lee, M., Zhang, F.: A new class of bent functions. IEICE Trans. Fundam. E88–A(7), 2039–2040 (2005)CrossRefGoogle Scholar
  19. 19.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977)zbMATHGoogle Scholar
  20. 20.
    McEliece, R.J.: Finite Fields for Computer Scientists and Engineers. Kluwer, Dordrecht (1987)CrossRefzbMATHGoogle Scholar
  21. 21.
    Ore, O.: Theory of non-commutative polynomials. Ann. Math. 34, 480–508 (1933)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Ore, O.: On a special class of polynomials. Trans. Am. Math. Soc. 35, 559–584 (1933)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Olsen, J.D., Scholtz, R.A., Welch, L.R.: Bent-function sequences. IEEE Trans. Inf. Theory 28(6), 858–864 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Rothaus, O.S.: On bent functions. J. Comb. Theory A 20, 300–305 (1976)CrossRefzbMATHGoogle Scholar
  25. 25.
    Udaya, P.: Polyphase and frequency hopping sequences obtained from finite rings, Ph.D. Dissertation, Department of Electrical Engineering, Indian Institute of Technology, Kanpur, India (1992)Google Scholar
  26. 26.
    Wu, B., Liu, Z.: Linearized polynomials over finite fields revisited. Finite Fields Appl. 22, 79–100 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Yu, N.Y., Gong, G.: Constructions of quadratic bent functions in polynomial forms. IEEE Trans. Inf. Theory 52(7), 3291–3299 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Dongmei Huang
    • 1
  • Chunming Tang
    • 1
    Email author
  • Yanfeng Qi
    • 2
  • Maozhi Xu
    • 3
  1. 1.School of Mathematics and InformationChina West Normal UniversityNanchongChina
  2. 2.School of ScienceHangzhou Dianzi UniversityHangzhouChina
  3. 3.LMAM, School of Mathematical SciencesPeking UniversityBeijingChina

Personalised recommendations