Advertisement

Counting extended irreducible Goppa codes

  • Kondwani MagambaEmail author
  • John A. Ryan
Original Paper
  • 32 Downloads

Abstract

We obtain an upper bound on the number of extended irreducible q-ary Goppa codes of degree r and length \(q^n+1\), where \(q=p^t\) and n and \(r>2\) are prime numbers.

Keywords

Enumeration Extended code Irreducible Goppa code 

Notes

References

  1. 1.
    Alperin, J.L., Bell, R.B.: Groups and Representations. Springer, New York (1978)zbMATHGoogle Scholar
  2. 2.
    Basheer, A.B.M.: Character tables of the general linear group and some of its subgroups. Msc Thesis, University of KwaZulu Natal (2008)Google Scholar
  3. 3.
    Berger, T.P.: On the cyclicity of Goppa codes, parity-check subcodes of Goppa codes, and extended Goppa codes. Finite Fields Appl. 6, 255–281 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, C.L.: Equivalent irreducible Goppa codes. IEEE Trans. Inf. Theory 24, 766–769 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dummit, D.S., Foote, R.M.: Abstract Algebra, 3rd edn. Wiley, New York (2004)zbMATHGoogle Scholar
  6. 6.
    Koo, R.: A classification of matrices of finite order over \(\mathbb{C}\), \(\mathbb{R}\) and \(\mathbb{Q}\). Math. Mag. 76, 143–148 (2003)MathSciNetGoogle Scholar
  7. 7.
    Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press, Cambridge (1983)zbMATHGoogle Scholar
  8. 8.
    Loidreau, P., Sendrier, N.: Weak keys in the McEliece public-key cryptosystem. IEEE Trans. Inf. Theory 47(3), 1207–1211 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Magamba, K., Ryan, J.A.: Counting irreducible polynomials of degree r over \(F_{q^n}\) and generating Goppa codes using the lattice of subfields of \(\mathbb{F}_{q^{nr}}\). J. Discrete Math. 2014 (2014).  https://doi.org/10.1155/2014/263179
  10. 10.
    Musukwa, A.I., Magamba, K., Ryan, J.A.: Enumeration of extended irreducible Goppa codes of degree \(2^m\) and length \(2^n+1\). J. Algebra Comb. Discrete Struct. Appl. 4(3), 235–256 (2017)MathSciNetGoogle Scholar
  11. 11.
    Ryan, J.A.: Irreducible Goppa codes. Ph.D. Thesis, University College Cork (2004)Google Scholar
  12. 12.
    Ryan, J.A., Fitzpatrick, P.: Enumeration of inequivalent irreducible Goppa codes. Discrete Appl. Math. 154(2), 399–412 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ryan, J.A.: Counting extended irreducible Goppa codes. J. Discrete Math. 2014 (2014).  https://doi.org/10.1155/2014/871871
  14. 14.
    Ryan, J.A.: Counting extended irreducible binary quartic Goppa codes of length \(2^n+1\). IEEE Trans. Inf. Theory 61(3), 1174–1178 (2015)CrossRefzbMATHGoogle Scholar
  15. 15.
    Stichtenoth, H., Topuzoğlu, A.: Factorization of a class of polynomials over finite fields. Finite Fields Appl. 18, 108–122 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Malawi University of Science and TechnologyThyoloMalawi
  2. 2.Mzuzu UniversityMzuzuMalawi
  3. 3.Chombe Boole Research CenterRumphiMalawi

Personalised recommendations