Natural orders for asymmetric space–time coding: minimizing the discriminant

  • Amaro BarrealEmail author
  • Capi Corrales Rodrigáñez
  • Camilla Hollanti
Original Paper


Algebraic space–time coding—a powerful technique developed in the context of multiple-input multiple-output (MIMO) wireless communications—has profited tremendously from tools from Class Field Theory and, more concretely, the theory of central simple algebras and their orders. During the last decade, the study of space–time codes for practical applications, and more recently for future generation (5G\(+\)) wireless systems, has provided a practical motivation for the consideration of many interesting mathematical problems. One such problem is the explicit computation of orders of central simple algebras with small discriminants. In this article, we consider the most interesting asymmetric MIMO channel setups and, for each treated case, we provide explicit pairs of fields and a corresponding non-norm element giving rise to a cyclic division algebra whose natural order has the minimum possible discriminant.


Central simple algebras Division algebras Discriminant Natural orders MIMO Space–time coding 



A. Barreal and C. Hollanti are financially supported by the Academy of Finland Grants #276031, #282938, and #303819, as well as a grant from the Foundation for Aalto University Science and Technology. The authors thank Jean Martinet, René Schoof, and Bharath Sethuraman for their useful suggestions, and the anonymous reviewers for their valuable comments to improve the quality of the manuscript.


  1. 1.
    Tarokh, V., Seshadri, N., Calderbank, A.R.: Space–time codes for high data rate wireless communication: performance criterion and code construction. IEEE Trans. Inf. Theory 44(2), 744–765 (1998)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Belfiore, J.-C., Rekaya, G.: Quaternionic lattices for space–time coding. In: Proceedings of the IEEE information theory workshop (2003)Google Scholar
  3. 3.
    Sethuraman, B.A., Rajan, B.S., Shashidhar, V.: Full-diversity, high-rate space–time block codes from division algebras. IEEE Trans. Inf. Theory 49(10), 2596–2616 (2003)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Belfiore, J.-C., Rekaya, G., Viterbo, E.: The golden code: a \(2\times 2\) full-rate space–time code with non-vanishing determinants. IEEE Trans. Inf. Theory 51(4), 1432–1436 (2005)CrossRefGoogle Scholar
  5. 5.
    Oggier, F., Rekaya, G., Belfiore, J.-C., Viterbo, E.: Perfect space–time block codes. IEEE Trans. Inf. Theory 52(9), 3885–3902 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Elia, P., Sethuraman, B.A., Kumar, P.V.: Perfect space–time codes for any number of antennas. IEEE Trans. Inf. Theory 53(11), 3853–3868 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hollanti, C., Lahtonen, J., Lu, H.-F.: Maximal orders in the design of dense space–time lattice codes. IEEE Trans. Inf. Theory 54(10), 4493–4510 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Vehkalahti, R., Hollanti, C., Lahtonen, J., Ranto, K.: On the densest MIMO lattices from cyclic division algebras. IEEE Trans. Inf. Theory 55(8), 3751–3780 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hollanti, C., Lu, H.-F.: Construction methods for asymmetric and multiblock space–time codes. IEEE Trans. Inf. Theory 55(3), 1086–1103 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Reiner, I.: Maximal Orders. London Mathematical Society Monographs New Series, vol. 28. Oxford University Press, Oxford (2003)Google Scholar
  11. 11.
    Vehkalahti, R.: Class field theoretic methods in the design of lattice signal constellations, vol. 100. TUCS dissertations (2008)Google Scholar
  12. 12.
    Vehkalahti, R., Hollanti, C., Oggier, F.: Fast-decodable asymmetric space–time codes from division algebras. IEEE Trans. Inf. Theory 58(4), 2362–2385 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Cohen, H., Stevenhagen, P.: Computational class field theory. Algorithmic Number Theory 44, 497–534 (2008)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Milne, J.S.: Algebraic Number Theory (v3.07), Graduate Course Notes. (2017)
  15. 15.
    Milne, J.S.: Class Field Theory (v4.02), Graduate Course Notes. (2013)
  16. 16.
    Hudson, R.H., Williams, K.S.: The integers of a cyclic quartic field. Rocky Mt. J. Math. 20(1), 145–150 (1990)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Huard, J.G., Spearman, B.K., Williams, K.S.: Integral bases for quartic fields wit quadratic subfields. Carlet. Ott. Math. Lect. Notes Ser. 7, 87–102 (1986)zbMATHGoogle Scholar
  18. 18.
    Bergé, A.-M., Martinet, J., Olivier, M.: The computation of sextic fields with a quadratic subfield. Math. Comput. 54(190), 869–884 (1990)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Amaro Barreal
    • 1
    Email author
  • Capi Corrales Rodrigáñez
    • 2
  • Camilla Hollanti
    • 1
  1. 1.Department of Mathematics and Systems AnalysisAalto UniversityEspooFinland
  2. 2.Faculty of Mathematical SciencesComplutense University of MadridMadridSpain

Personalised recommendations