Economic Theory

, Volume 67, Issue 2, pp 463–485 | Cite as

Existence in multidimensional screening with general nonlinear preferences

  • Kelvin Shuangjian ZhangEmail author
Research Article


We generalize the approach of Carlier (J Math Econ 35, 129–150, 2001) and provide an existence proof for the multidimensional screening problem with general nonlinear preferences. We first formulate the principal’s problem as a maximization problem with G-convexity constraints and then use G-convex analysis to prove existence.


Principal–agent problem Adverse selection Bilevel optimization Incentive compatibility Non-quasilinearity 

JEL Classification

C61 D42 D82 H21 J42 



  1. Armstrong, M.: Multiproduct nonlinear pricing. Econometrica 64, 51–75 (1996)CrossRefGoogle Scholar
  2. Balder, E.J.: An extension of duality-stability relations to non-convex optimization problems. SIAM J. Control Optim. 15, 329–343 (1977)CrossRefGoogle Scholar
  3. Baron, D.P., Myerson, R.B.: Regulating a monopolist with unknown costs. Econometrica 50, 911–930 (1982)CrossRefGoogle Scholar
  4. Basov, S.: Multidimensional Screening. Springer, Berlin (2005)Google Scholar
  5. Carlier, G.: A general existence result for the principal-agent problem with adverse selection. J. Math. Econ. 35, 129–150 (2001)CrossRefGoogle Scholar
  6. Carlier, G., Lachand-Robert, T.: Regularity of solutions for some variational problems subject to convexity constraint. Commun. Pure Appl. Math. 54, 583–594 (2001)CrossRefGoogle Scholar
  7. Dolecki, S., Kurcyusz, S.: On \(\Phi \)-convexity in extremal problems. SIAM J. Control Optim. 16, 277–300 (1978)CrossRefGoogle Scholar
  8. Ekeland, I., Temam, R.: Analyse Convexe et Problémes Variationnels. Dunod (Libraire), Paris (1976)Google Scholar
  9. Elster, K.-H., Nehse, R.: Zur theorie der polarfunktionale. Math. Oper. Stat. 5, 3–21 (1974)Google Scholar
  10. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)Google Scholar
  11. Figalli, A., Kim, Y.-H., McCann, R.J.: When is multidimensional screening a convex program? J. Econ. Theory 146, 454–478 (2011)CrossRefGoogle Scholar
  12. Gangbo, W., McCann, R.J.: The geometry of optimal transportation. Acta Math. 177, 113–161 (1996)CrossRefGoogle Scholar
  13. Kutateladze, S.S., Rubinov, A.M.: Minkowski duality and its applications. Russ. Math. Surv. 27, 137–192 (1972)CrossRefGoogle Scholar
  14. Martínez-Legaz, J.E.: Generalized convex duality and its economic applications. In: Hadjisavvas, N., Komlósi, S., Schaible, S. (eds.) Handbook of Generalized Convexity and Generalized Monotonicity, pp. 237–292. Springer, New York (2005)CrossRefGoogle Scholar
  15. Maskin, E., Riley, J.: Monopoly with incomplete information. RAND J. Econ. 15, 171–196 (1984)CrossRefGoogle Scholar
  16. McAfee, R.P., McMillan, J.: Multidimensional incentive compatibility and mechanism design. J. Econ. Theory 46, 335–354 (1988)CrossRefGoogle Scholar
  17. McCann, R.J., Zhang, K.S.: On concavity of the monopolist’s problem facing consumers with nonlinear price preferences. Commun. Pure Appl. Math. (to appear)Google Scholar
  18. Mirrlees, J.A.: An exploration in the theory of optimum income taxation. Rev. Econ. Stud. 38, 175–208 (1971)CrossRefGoogle Scholar
  19. Monteiro, P.K., Page Jr., F.H.: Optimal selling mechanisms for multiproduct monopolists: incentive compatibility in the presence of budget constraints. J. Math. Econ. 30, 473–502 (1998)CrossRefGoogle Scholar
  20. Mussa, M., Rosen, S.: Monopoly product and quality. J. Econ. Theory 18, 301–317 (1978)CrossRefGoogle Scholar
  21. Myerson, R.B.: Optimal auction design. Math. Oper. Res. 6, 58–73 (1981)CrossRefGoogle Scholar
  22. Nöldeke, G., Samuelson, L.: The implementation duality. Econometrica 86(4), 1283–1324 (2018)CrossRefGoogle Scholar
  23. Rochet, J.-C.: A necessary and sufficient condition for rationalizability in a quasi-linear context. J. Math. Econ. 16, 191–200 (1987)CrossRefGoogle Scholar
  24. Rochet, J.-C., Choné, P.: Ironing sweeping and multidimensional screening. Econometrica 66, 783–826 (1998)CrossRefGoogle Scholar
  25. Rochet, J.-C., Stole, L.A.: The economics of multidimensional screening. In: Dewatripont, M., Hansen, L.P., Turnovsky, S.J. (eds.) Advances in Economics and Econometrics, pp. 150–197. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  26. Rubinov, A.M.: Abstract convexity: examples and applications. Optimization 47, 1–33 (2000)CrossRefGoogle Scholar
  27. Singer, I.: Abstract Convex Analysis. Wiley, New York (1997)Google Scholar
  28. Spence, M.: Competitive and optimal responses to signals: an analysis of efficiency and distribution. J. Econ. Theory 7, 296–332 (1974)CrossRefGoogle Scholar
  29. Spence, M.: Multi-product quantity-dependent prices and profitability constraints. Rev. Econ. Stud. 47, 821–841 (1980)CrossRefGoogle Scholar
  30. Trudinger, N.S.: On the local theory of prescribed Jacobian equations. Discrete Contin. Dyn. Syst. 34, 1663–1681 (2014)CrossRefGoogle Scholar
  31. Wilson, R.: Nonlinear Pricing. Oxford University Press, Oxford (1993)Google Scholar
  32. Zhang, K.S.: Existence, uniqueness, concavity and geometry of the monopolist’s problem facing consumers with nonlinear price preferences. Ph.D. thesis, University of Toronto (2018)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations