Economic Theory

, Volume 67, Issue 2, pp 379–391 | Cite as

Equilibrium in quality markets, beyond the transferable case

  • G. CarlierEmail author
  • I. Ekeland
Research Article


We consider the market for an indivisible quality good, in the tradition of standard hedonic equilibrium theory but replacing the commonly used quasi-linear assumption on consumers’ preferences by a more realistic nonlinear budget constraint. Taking advantage of quasi-linearity on the producer’s side, we prove that an optimal transport-like argument can still be used to derive existence of equilibria. We also discuss some simple one-dimensional examples.


Quality markets Equilibrium Optimal transport Nontransferable models 

JEL Classification

C62 C78 



The authors are grateful to Alfred Galichon for many fruitful discussions. G.C. acknowledges the support of the Agence Nationale de la Recherche through the projects ISOTACE and MAGA.


  1. Becker, G.: A study of the allocation of time. Econ. J. 75, 493–517 (1965)CrossRefGoogle Scholar
  2. Carlier, G., Ekeland, I.: Equilibrium structure of a bidimensional asymmetric city. Nonlinear Anal. Real World Appl. 8(3), 725–748 (2007)CrossRefGoogle Scholar
  3. Carlier, G., Ekeland, I.: Matching for teams. Econ. Theory 42(2), 397–418 (2010)CrossRefGoogle Scholar
  4. Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Springer, Berlin (1977)CrossRefGoogle Scholar
  5. Chiappori, P.-A., McCann, R.J., Nesheim, L.P.: Hedonic price equilibria, stable matching, and optimal transport: equivalence, topology, and uniqueness. Econ. Theory 42(2), 317–354 (2010)CrossRefGoogle Scholar
  6. Court, L.: Entrepreneurial and consumer demand theories for commodity spectra. Econometrica 9, 135–162 (1941)CrossRefGoogle Scholar
  7. Ekeland, I.: Existence, uniqueness and efficiency of equilibrium in hedonic markets with multidimensional types. Econ. Theory 42(2), 275–315 (2010)CrossRefGoogle Scholar
  8. Ekeland, I., Heckman, J., Nesheim, L.: Identification and estimation of hedonic models. J. Polit. Econ. 112, 60–109 (2004)CrossRefGoogle Scholar
  9. Galichon, A.: Optimal Transport Methods in Economics. Princeton University Press, Princeton (2016)CrossRefGoogle Scholar
  10. Glicksberg, I.L.: A further generalization of the Kakutani fixed theorem, with application to Nash equilibrium points. Proc. Am. Math. Soc. 3, 170–174 (1952)Google Scholar
  11. Heckman, J., Matzkin, R., Nesheim, L.: Nonparametric identification and estimation of nonadditive hedonic models. Econometrica 78(5), 1569–1591 (2010)CrossRefGoogle Scholar
  12. Houthakker, H.: Compensated changes in quantities and qualities consumed. Rev. Econ. Stud. 19(3), 155–164 (1952)CrossRefGoogle Scholar
  13. Lancaster, K.: A new approach to consumer theory. J. Polit. Econ. 74(2), 132–157 (1966)CrossRefGoogle Scholar
  14. McCann, R.J., Shuangjian Zhang, K.: On concavity of the monopolist’s problem facing consumers with nonlinear price preferences. Arxiv e-prints (2017)Google Scholar
  15. Mussa, M., Rosen, S.: Monopoly and product quality. J. Econ. Theory 18(2), 301–317 (1978)CrossRefGoogle Scholar
  16. Muth, R.: Household production and consumer demand function. Econometrica 39, 699–708 (1966)CrossRefGoogle Scholar
  17. Noldeke, G., Samuelson, L.: The implementation duality. Cowles foundation discussion papers, Cowles Foundation for Research in Economics, Yale University (2017)Google Scholar
  18. Rosen, S.: Hedonic prices and implicit markets: product differentiation in pure competition. J. Polit. Econ. 82(1), 34–55 (1974)CrossRefGoogle Scholar
  19. Santambrogio, F.: Optimal Transport for Applied Mathematicians. Birkhauser, Boston (2015)CrossRefGoogle Scholar
  20. Villani, C.: Topics in Optimal Transportation, volume 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2003)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CEREMADE (UMR CNRS 7534)Université Paris-Dauphine, PSL Research UniversityParisFrance
  2. 2.MOKAPLAN, Inria ParisParisFrance

Personalised recommendations