Advertisement

Economic Theory

, Volume 66, Issue 3, pp 557–591 | Cite as

Directional monotone comparative statics

  • Anne-Christine Barthel
  • Tarun Sabarwal
Research Article

Abstract

Many questions of interest in economics can be stated in terms of monotone comparative statics: If a parameter of a constrained optimization problem increases, when does its solution increase as well. We characterize monotone comparative statics in different directions in finite-dimensional Euclidean space by extending the monotonicity theorem of Milgrom and Shannon (Econometrica 62(1):157–180, 1994) to constraint sets ordered in Quah (Econometrica 75(2):401–431, 2007)’s set order. Our characterizations are ordinal and retain the same flavor as their counterparts in the standard theory, showing new connections to the standard theory and presenting new results. The results are highlighted with several applications (in consumer theory, producer theory, and game theory) which were previously outside the scope of the standard theory of monotone comparative statics.

Keywords

Monotone comparative statics i-Directional single crossing property i-Directional set order Quasisupermodular function 

JEL Classification

C61 C70 D00 

References

  1. Aaberge, R., Gagsvik, J.K., Strøm, S.: Labor supply responses and welfare effects of tax reforms. Scand. J. Econ. 97(4), 635–659 (1995)CrossRefGoogle Scholar
  2. Amir, R.: Cournot oligopoly and the theory of supermodular games. Games Econ. Behav. 15, 132–148 (1996)CrossRefGoogle Scholar
  3. Amir, R., Lambson, V.E.: On the effects of entry in Cournot markets. Rev. Econ. Stud. 67(2), 235–254 (2000)CrossRefGoogle Scholar
  4. Amir, R., Lazzati, N.: Endgoenous information acquisition in Bayesian games with strategic complementarities. J. Econ. Theory 163, 684–698 (2016)CrossRefGoogle Scholar
  5. Antoniadu, E.: Comparative statics for the consumer problem. Econ. Theory 31(1), 189–203 (2007)CrossRefGoogle Scholar
  6. Balbus, Ł., Reffett, K., Woźny, Ł.: A constructive study of Markov equilibria in stochastic games with strategic complementarities. J. Econ. Theory 150, 815–840 (2014)CrossRefGoogle Scholar
  7. Bruneau, J.F.: A note on permits, standards, and technological innovation. J. Environ. Econ. Manag. 48(3), 1192–1199 (2004)CrossRefGoogle Scholar
  8. Bulow, J.I., Geanakoplos, J.D., Klemperer, P.D.: Multimarket oligopoly: strategic substitutes and complements. J. Polit. Econ. 93(3), 488–511 (1985)CrossRefGoogle Scholar
  9. Cosandier, C., Garcia, F., Knauff, M.: Price competition with differentiated goods and incomplete product awareness. Econ. Theory (2017). doi: 10.1007/s00199-017-1050-3
  10. Dobzinski, S., Lavi, R., Nisan, N.: Multi-unit auctions with budget limits. Games Econ. Behav. 74(2), 486–503 (2012)CrossRefGoogle Scholar
  11. Echenique, F.: Comparative statics by adaptive dynamics and the correspondence principle. Econometrica 70(2), 257–289 (2002)CrossRefGoogle Scholar
  12. Echenique, F.: A characterization of strategic complementarities. Games Econ. Behav. 46(2), 325–347 (2004)CrossRefGoogle Scholar
  13. Harbaugh, W.T.: The prestige motive for making charitable transfers. Am. Econ. Rev. 88(2), 277–282 (1998)Google Scholar
  14. Heikkilä, S., Reffett, K.: Fixed point theorems and their applications to theory of Nash equilibria. Nonlinear Anal. 64, 1415–1436 (2006)CrossRefGoogle Scholar
  15. Hoynes, H.H.: Welfare transfers in two-parent families: labor supply and welfare participation under AFDC-UP. Econometrica 64(2), 295–332 (1996)CrossRefGoogle Scholar
  16. Jensen, M.K.: Aggregative games and best-reply potentials. Econ. Theory 43(1), 45–66 (2010)CrossRefGoogle Scholar
  17. LiCalzi, M., Veinott, A.F., Jr.: Subextremal Functions and Lattice Programming, Working paper (1992)Google Scholar
  18. Milgrom, P., Roberts, J.: Rationalizability, learning, and equilibrium in games with strategic complementarities. Econometrica 58(6), 1255–1277 (1990)CrossRefGoogle Scholar
  19. Milgrom, P., Shannon, C.: Monotone comparative statics. Econometrica 62(1), 157–180 (1994)CrossRefGoogle Scholar
  20. Mirman, L.J., Ruble, R.: Lattice theory and the consumer’s problem. Math. Oper. Res. 33(2), 301–314 (2008)CrossRefGoogle Scholar
  21. Monaco, A.J., Sabarwal, T.: Games with strategic complements and substitutes. Econ. Theory 62(1), 65–91 (2016)CrossRefGoogle Scholar
  22. Montero, J.-P.: Permits, standards, and technology innovation. J. Environ. Econ. Manag. 44(1), 23–44 (2002)CrossRefGoogle Scholar
  23. Palfrey, T.R.: Multiple-object, discriminatory auctions with bidding constraints: a game-theoretic analysis. Manag. Sci. 26(9), 935–946 (1980)CrossRefGoogle Scholar
  24. Quah, J.K.-H.: The comparative statics of constrained optimization problems. Econometrica 75(2), 401–431 (2007)CrossRefGoogle Scholar
  25. Quah, J.K.-H., Strulovici, B.: Comparative statics, informativeness, and the interval dominance order. Econometrica 77(6), 1949–1992 (2009)CrossRefGoogle Scholar
  26. Reynolds, S.S., Rietzke, D.: Price caps, oligopoly, and entry. Econ. Theory (2017). doi: 10.1007/s00199-016-0963-6
  27. Rothkopf, M.H.: Bidding in simultaneous auctions with a constraint on exposure. Oper. Res. 25(4), 620–629 (1977)CrossRefGoogle Scholar
  28. Roy, S., Sabarwal, T.: On the (non-)lattice structure of the equilibrium set in games with strategic substitutes. Econ. Theory 37(1), 161–169 (2008)CrossRefGoogle Scholar
  29. Roy, S., Sabarwal, T.: Monotone comparative statics for games with strategic substitutes. J. Math. Econ. 46(5), 793–806 (2010)CrossRefGoogle Scholar
  30. Roy, S., Sabarwal, T.: Characterizing stability properties in games with strategic substitutes. Games Econ. Behav. 75(1), 337–353 (2012)CrossRefGoogle Scholar
  31. Smithson, R.E.: Fixed points of order preserving multifunctions. Proc. Am. Math. Soc. 28(1), 304–310 (1971)CrossRefGoogle Scholar
  32. Topkis, D.: Minimizing a submodular function on a lattice. Oper. Res. 26, 305–321 (1978)CrossRefGoogle Scholar
  33. Topkis, D.: Equilibrium points in nonzero-sum n-person submodular games. SIAM J. Control Optim. 17(6), 773–787 (1979)CrossRefGoogle Scholar
  34. Topkis, D.: Supermodularity and Complementarity. Princeton University Press, Princeton (1998)Google Scholar
  35. van Soest, A.: Structural models of family labor supply: a discrete choice approach. J. Hum. Resour. 30(1), 63–88 (1995)CrossRefGoogle Scholar
  36. Veinott, A.F., Jr: Lattice Programming: Qualitative Optimization and Equilibria, Working paper (1992)Google Scholar
  37. Vives, X.: Nash equilibrium with strategic complementarities. J. Math. Econ. 19(3), 305–321 (1990)CrossRefGoogle Scholar
  38. Zhou, L.: The set of Nash equilibria of a supermodular game is a complete lattice. Games Econ. Behav. 7(2), 295–300 (1994)CrossRefGoogle Scholar
  39. Zimper, A.: A fixed point characterization of the dominance-solvability of lattice games with strategic substitutes. Int. J. Game Theory 36(1), 107–117 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.College of BusinessWest Texas A & M UniversityCanyonUSA
  2. 2.Department of EconomicsUniversity of KansasLawrenceUSA

Personalised recommendations