Advertisement

Economic Theory

, Volume 66, Issue 3, pp 593–626 | Cite as

Comparing recursive equilibrium in economies with dynamic complementarities and indeterminacy

  • Manjira Datta
  • Kevin Reffett
  • Łukasz Woźny
Research Article

Abstract

We develop a new multistep monotone map approach to characterize minimal state-space recursive equilibrium for a broad class of infinite horizon dynamic general equilibrium models with positive externalities, dynamic complementarities, public policy, equilibrium indeterminacy, and sunspots. This new approach is global, defined in the equilibrium version of the household’s Euler equation, applies to economies for which there are no known existence results, and existing methods are inapplicable. Our methods are able to distinguish different structural properties of recursive equilibria. In stark contrast to the extensive body of existing work on these models, our methods make no appeal to the theory of smooth dynamical systems that are commonly applied in the literature. Actually, sufficient smoothness to apply such methods cannot be established relative to the set of recursive equilibria. Our partial ordering methods also provide a qualitative theory of equilibrium comparative statics in the presence of multiple equilibrium. These robust equilibrium comparison results are shown to be computable via successive approximations from subsolutions and supersolutions in sets of candidate equilibrium function spaces. We provide applications to an extensive literature on local indeterminacy of dynamic equilibrium.

Keywords

Recursive equilibrium Supermodularity Monotone map methods Externality Indeterminacy 

JEL Classification

D62 D91 E13 

Notes

Acknowledgements

We are grateful to Francesco Agostinelli, Rabah Amir, Łukasz Balbus, Robert Becker, Stefano Bosi, Dilsat Dalkiran, Jean-Pierre Drugeon, Ed Green, Martin Kaae Jensen, Takashi Kamihigashi, Robert Lucas, Olivier Morand, Ed Prescott, Manuel Santos, Yiannis Vailakis, Alain Venditti, as well as the seminar participants at Johns Hopkins, Paris I-Sorbonne, Warsaw School of Economics, 2013 SAET and DIET conferences in Paris, 2014 ANR Nuvo Tempo Workshop on Recursive Methods in Glasgow, 2015 ANR Nuvo Tempo Tempe Arizona, University of Miami Economic Theory conference, 2016 European General Equilibrium Conference in Glasgow, and two anonymous referees for their helpful comments and suggestions. We especially would like to thank M. Ali Khan for extended conversations on this project that reoriented its focus. All remaining shortcomings are our own.

References

  1. Acemoglu, D., Jensen, M.K.: Robust comparative statics in large dynamic economies. J. Polit. Econ. 123(3), 587–640 (2015)CrossRefGoogle Scholar
  2. Amann, H.: Fixed point equations and nonlinear eigenvalue problems in order banach spaces. Siam Rev. 18(4), 620–709 (1976)CrossRefGoogle Scholar
  3. Antoci, A., Galeotti, M., Russu, P.: Poverty trap and global indeterminacy in a growth model with open-access natural resources. J. Econ. Theory 146(2), 569–591 (2011)CrossRefGoogle Scholar
  4. Balbus, Ł., Reffett, K., Woźny, Ł.: Time consistent Markov policies in dynamic economies with quasi-hyperbolic consumers. Int. J. Game Theory 44(1), 83–112 (2015)CrossRefGoogle Scholar
  5. Beaudry, P., Portier, F.: When can changes in expectations cause business cycle fluctuations in neo-classical settings? J. Econ. Theory 135(1), 458–477 (2007)CrossRefGoogle Scholar
  6. Benhabib, J., Farmer, R.E.A.: Indeterminacy and increasing returns. J. Econ. Theory 63(1), 19–41 (1994)CrossRefGoogle Scholar
  7. Benhabib, J., Perli, R.: Uniqueness and indeterminacy: on the dynamics of endogenous growth. J. Econ. Theory 63(1), 113–142 (1994)CrossRefGoogle Scholar
  8. Benhabib, J., Dong, F., Wang, P.: Adverse Selection and Self-fulfilling Business Cycles, Manuscript, New York University (2013)Google Scholar
  9. Benhabib, J.F.D., Wang, P.: Adverse Selection and Self-fulfilling Business Cycles, Manuscript, New York University (2014)Google Scholar
  10. Boldrin, M., Rustichini, A.: Growth and indeterminacy in dynamic models with externalities. Econometrica 62(2), 323–342 (1994)CrossRefGoogle Scholar
  11. Coleman, I.W.J.: Equilibrium in a production economy with an income tax. Econometrica 59(4), 1091–1104 (1991)CrossRefGoogle Scholar
  12. Coleman, I.W.J.: Uniqueness of an equilibrium in infinite-horizon economies subject to taxes and externalities. J. Econ. Theory 95, 71–78 (2000)CrossRefGoogle Scholar
  13. Coleman, I.W.J.: Equilibria in distorted infinite-horizon economies with capital and labor. J. Econ. Theory 72(2), 446–461 (1997)CrossRefGoogle Scholar
  14. Crettez, B., Morhaim, L.: Existence of competitive equilibrium in a non-optimal one-sector economy without conditions on the distorted marginal product of capital. Math. Soc. Sci. 63(3), 197–206 (2012)CrossRefGoogle Scholar
  15. d’Albis, H., Augeraud-Veron, E., Venditti, A.: Business cycle fluctuations and learning-by-doing externalities in a one-sector model. J. Math. Econ. 48(5), 295–308 (2012)CrossRefGoogle Scholar
  16. Datta, M.: Existence and uniqueness of equilibrium in a dynamic distorted small open economy. Econ. Lett. 152, 19–23 (2017)CrossRefGoogle Scholar
  17. Datta, M., Mirman, L.J., Reffett, K.L.: Existence and uniqueness of equilibrium in distorted dynamic economies with capital and labor. J. Econ. Theory 103(2), 377–410 (2002)CrossRefGoogle Scholar
  18. Datta, M., Mirman, L.J., Morand, O.F., Reffett, K.L.: Markovian equilibrium in infinite horizon economies with incomplete markets and public policy. J. Math. Econ. 41(4–5), 505–544 (2005)CrossRefGoogle Scholar
  19. Debreu, G.: Economies with a finite set of equilibria. Econometrica 38, 387–392 (1970)CrossRefGoogle Scholar
  20. Dugundji, J., Granas, A.: Fixed Point Theory. PWN Polish Scientific Publishers, Warsaw (1982)Google Scholar
  21. Farmer, R.E.A., Guo, J.T.: Real business cycles and the animal spirits hypothesis. J. Econ. Theory 63(1), 42–72 (1994)CrossRefGoogle Scholar
  22. Feng, Z., Hoelle, M.: Indeterminacy in stochastic overlapping generations models: real effects in the long run. Econ. Theor. 63(2), 559–585 (2017)CrossRefGoogle Scholar
  23. Feng, Z., Miao, Jianjun, Peralva-Alta, A., Santos, M.: Numerical simulation of nonoptimal dynamic equilibrium models. Int. Econ. Rev. 55, 83–110 (2014)CrossRefGoogle Scholar
  24. Greenwood, J., Huffman, G.W.: On the existence of nonoptimal equilibria in dynamic stochastic economies. J. Econ. Theory 65(2), 611–623 (1995)CrossRefGoogle Scholar
  25. Guo, J.T., Harrison, S.G.: Balanced-budget rules and macroeconomic (in)stability. J. Econ. Theory 119(2), 357–363 (2004)CrossRefGoogle Scholar
  26. Guo, J.T., Harrison, S.G.: Indeterminacy with no-income-effect preferences and sector-specific externalities. J. Econ. Theory 145(1), 287–300 (2010)CrossRefGoogle Scholar
  27. Guo, J.T., Lansing, K.J.: Indeterminacy and stabilization policy. J. Econ. Theory 82(2), 481–490 (1998)CrossRefGoogle Scholar
  28. Heikkila, S., Reffett, K.: Fixed point theorems and their applications to Nash equilibria. Nonlinear Anal. 64, 1415–1436 (2006)CrossRefGoogle Scholar
  29. Hirsch, M., Smale, R., Devaney, S.: Differential Equations, Dynamical Systems, and an Introduction to Chaos. Academic Press, London (2013)Google Scholar
  30. Huang, K.X., Meng, Q.: Increasing returns and unsynchronized wage adjustment in sunspot models of the business cycle. J. Econ. Theory 147(1), 284–309 (2012)CrossRefGoogle Scholar
  31. Jaimovich, N.: Firm dynamics and markup variations: Implications for sunspot equilibria and endogenous economic fluctuations. J. Econ. Theory 137(1), 300–325 (2007)CrossRefGoogle Scholar
  32. Jaimovich, N.: Income effects and indeterminacy in a calibrated one-sector growth model. J. Econ. Theory 143(1), 610–623 (2008)CrossRefGoogle Scholar
  33. Kehoe, T.J., Levine, D.K., Romer, P.M.: Determinacy of equilibria in dynamic models with finitely many consumers. J. Econ. Theory 50(1), 1–21 (1990)CrossRefGoogle Scholar
  34. Kubler, F., Schmedders, K.: Stationary equilibria in asset-pricing models with incomplete markets and collateral. Econometrica 71(6), 1767–1793 (2003)CrossRefGoogle Scholar
  35. Liu, Z., Wang, P.: Credit constraints and self-fulfilling business cycles. Am. Econ. J. Macroecon. 6(1), 32–69 (2014)CrossRefGoogle Scholar
  36. Lloyd-Braga, T., Modesto, L., Seegmuller, T.: Market distortions and local indeterminacy. A general approach. J. Econ. Theory 151, 216–247 (2014)CrossRefGoogle Scholar
  37. Lucas, J., Robert, E., Prescott, E.C.: Investment under uncertainty. Econometrica 39(5), 659–681 (1971)CrossRefGoogle Scholar
  38. Markowsky, G.: Chain-Complete Posets and Directed Sets with Applications. Algebr. Univ. 6(1), 53–68 (1976)CrossRefGoogle Scholar
  39. MasColell, A.: The Theory of General Economic Equilibrium: A Differentiable Approach. Econometric Society Monographs in Pure Theory 9. Cambridge Press, Cambridge (1986)Google Scholar
  40. Menuet, M., Minea, A., Villieu, P.: Deficit, monetization, and economic growth: a case for multiplicity and indeterminacy. Econ. Theory (2017). doi: 10.1007/s00199-017-1040-5 CrossRefGoogle Scholar
  41. Mirman, L.J., Morand, O.F., Reffett, K.L.: A qualitative approach to markovian equilibrium in infinite horizon economies with capital. J. Econ. Theory 139(1), 75–98 (2008)CrossRefGoogle Scholar
  42. Morand, O.F., Reffett, K.L.: Existence and uniqueness of equilibrium in nonoptimal unbounded infinite horizon economies. J. Monet. Econ. 50(6), 1351–1373 (2003)CrossRefGoogle Scholar
  43. Nishimura, K., Seegmuller, T., Venditti, A.: Fiscal policy, debt constraint and expectations-driven volatility. J. Math. Econ. 61(C), 305–316 (2015)CrossRefGoogle Scholar
  44. Nourry, C., Seegmuller, T., Venditti, A.: Aggregate instability under balanced-budget consumption taxes: a re-examination. J. Econ. Theory 148(5), 1977–2006 (2013)CrossRefGoogle Scholar
  45. Peralta-Alva, A., Santos, M.: Problems with the numerical simulation of heterogeneous agent models and economic distortions. J. Eur. Econ. Assoc. 8, 617–625 (2010)CrossRefGoogle Scholar
  46. Phillips, P.C.B.: Folklore theorems, implicit maps, and indirect inference. Econometrica 80(1), 425–454 (2012)CrossRefGoogle Scholar
  47. Pintus, P.: Indeterminacy with almost constant returns to scale: capital-labor substitution matters. Econ. Theor. 28(3), 633–649 (2006)CrossRefGoogle Scholar
  48. Prescott, E.C., Mehra, R.: Recursive competitive equilibrium: the case of homogeneous households. Econometrica 48(6), 1365–1379 (1980)CrossRefGoogle Scholar
  49. Raines, B.E., Stockman, D.R.: Chaotic sets and Euler equation branching. J. Math. Econ. 46(6), 1173–1193 (2010)CrossRefGoogle Scholar
  50. Romer, P.M.: Increasing returns and long-run growth. J. Polit. Econ. 94(5), 1002–1037 (1986)CrossRefGoogle Scholar
  51. Samuelson, P.: Stability of equilibrium: comparative statics and dynamics. Econometrica 9, 97–120 (1941)CrossRefGoogle Scholar
  52. Santos, M.S.: Smoothness of the policy function in discrete time economic models. Econometrica 59(5), 1365–1382 (1991)CrossRefGoogle Scholar
  53. Santos, M.S.: Differentiability and comparative analysis in discrete-time infinite-horizon optimization. J. Econ. Theory 57(1), 222–229 (1992)CrossRefGoogle Scholar
  54. Santos, M.S.: On non-existence of Markov equilibria in competitive-market economies. J. Econ. Theory 105(1), 73–98 (2002)CrossRefGoogle Scholar
  55. Schmitt-Grohe, S., Uribe, M.: Balanced-budget rules, distortionary taxes, and aggregate instability. J. Polit. Econ. 105(5), 976–1000 (1997)CrossRefGoogle Scholar
  56. Shimokawa, T.: Existence and local indeterminacy of periodic equilibrium paths in infinite horizon models with external effects. Econ. Theor. 16(1), 199–208 (2000)CrossRefGoogle Scholar
  57. Spear, S.E.: Growth, externalities, and sunspots. J. Econ. Theory 54(1), 215–223 (1991)CrossRefGoogle Scholar
  58. Stockman, D.R.: Balanced-budget rules: chaos and deterministic sunspots. J. Econ. Theory 145(3), 1060–1085 (2010)CrossRefGoogle Scholar
  59. Stokey, N., Lucas, R., Prescott, E.: Recursive Methods in Economic Dynamics. Harvard University Press, Cambridge (1989)Google Scholar
  60. Stoltenberg-Hansen, V., Lindstrom, I., Griffor, E.: Mathematical Theory of Domains. Cambridge Tracts in Theoretical Computer Science 22. Cambridge Press, Cambridge (1994)CrossRefGoogle Scholar
  61. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math. 5(2), 285–309 (1955)CrossRefGoogle Scholar
  62. Topkis, D. M.: Minimizing a submodular function over a lattice. Oper. Res. 26, 305–326 (1978)Google Scholar
  63. Topkis, D.M.: Supermodularity and Complementarity. Frontiers of Economic Research. Princeton University Press, Princeton (1998)Google Scholar
  64. Veinott, A.F. Jr.: Lattice Programming: Qualitative Optimization and Equilibria, Manuscript, Stanford University (1992)Google Scholar
  65. Wang, P., Wen, Y.: Imperfect competition and indeterminacy of aggregate output. J. Econ. Theory 143(1), 519–540 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of EconomicsArizona State UniversityTempeUSA
  2. 2.Department of Quantitative EconomicsSzkola Glowna HandlowaWarszawaPoland

Personalised recommendations