Advertisement

Economic Theory

, Volume 66, Issue 3, pp 787–817 | Cite as

On temporal aggregators and dynamic programming

  • Philippe Bich
  • Jean-Pierre Drugeon
  • Lisa Morhaim
Research Article

Abstract

This paper proposes dynamic programming tools for payoffs based on aggregating functions that depend on the current action and the future expected payoff. Some regularity properties are provided on the aggregator to establish existence, uniqueness and computation of the solution to the Bellman equation. Our setting allows to encompass and generalize many previous results based upon additive or non-additive payoff functions.

Keywords

Dynamic programming Temporal aggregators Intertemporal choice 

JEL Classification

C61 D90 

References

  1. Alvarez, F., Stokey, N.: Dynamic programming with homogeneous functions. J. Econ. Theory 82, 167–189 (1998)CrossRefGoogle Scholar
  2. Becker, R.A., Boyd, J. III.: Capital Theory, Equilibrum Analysis and Recursive Utility. Blackwell, Hoboken (1997)Google Scholar
  3. Boyd, J. III.: Recursive utility and the Ramsey problem. J. Econ. Theory 50, 326–345 (1990)Google Scholar
  4. Duran, J.: On dynamic programming with unbounded returns. Econ. Theory 15, 339–352 (2000)CrossRefGoogle Scholar
  5. Jaśkiewicz, A., Matkowski, J., Nowak, A.S.: On variable discounting in dynamic programming: applications to resource extraction and other economic models. Ann. Oper. Res. 220, 263–278 (2014)CrossRefGoogle Scholar
  6. Kamihigashi, T.: Elementary results on solutions to the Bellman equation of dynamic programming: existence, uniqueness and convergence. Econ. Theory 56, 251–273 (2014)CrossRefGoogle Scholar
  7. Koopmans, T.: Stationary ordinal utility and impatience. Econometrica 28, 287–309 (1960)CrossRefGoogle Scholar
  8. Le Van, C., Morhaim, L.: Optimal growth models with bounded or unbounded returns: a unifying approach. J. Econ. Theory 105, 158–187 (2002)CrossRefGoogle Scholar
  9. Le Van, C., Vailakis, Y.: Recursive utility and optimal growth with bounded or unbounded returns. J. Econ. Theory 123, 187–209 (2005)CrossRefGoogle Scholar
  10. Marinacci, M., Montrucchio, L.: Unique solutions for stochastic recursive utilities. J. Econ. Theory 145, 1776–1804 (2010)CrossRefGoogle Scholar
  11. Martins-da-Rocha, V.F., Vailakis, Y.: Existence and uniqueness of a fixed point for local contractions. Econometrica 78, 1127–1141 (2010)CrossRefGoogle Scholar
  12. Rincon-Zapatero, J.P., Rodriguez-Palmero, C.: Existence and uniqueness of solutions to the Belllman equation in the unbounded case. Econometrica 71, 1519–1555 (2003)CrossRefGoogle Scholar
  13. Stokey, N., Lucas, R.E.: Optimal growth with many consumers. J. Econ. Theory 32, 139–171 (1984)CrossRefGoogle Scholar
  14. Stokey, N., Lucas, R.E., Prescott, E.: Recursive Methods in Economic Dynamics. Harvard University Press, Cambridge (1989)Google Scholar
  15. Streufert, P.A.: Stationary recursive utility and dynamic programming under the assumption of biconvergence. Rev. Econ. Stud. 57, 79–97 (1990)CrossRefGoogle Scholar
  16. Streufert, P.A.: An abstract topological approach to dynamic programming. J. Math. Econ. 21, 59–88 (1992)CrossRefGoogle Scholar
  17. Yao, M.: Recursive utility and the solution to the Bellman equation, manuscript, Keio university, No. DP2016-08 (2016)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Paris School of EconomicsUniversity of Paris 1 Panthéon-SorbonneParisFrance
  2. 2.Paris School of EconomicsCentre National de la Recherche ScientifiqueParisFrance
  3. 3.CRED Paris Center for Law and EconomicsUniversity of Paris 2 Panthéon-AssasParisFrance

Personalised recommendations