Advertisement

Osteoporosis International

, Volume 30, Issue 11, pp 2183–2193 | Cite as

Oral vitamin D3 supplementation increases serum fibroblast growth factor 23 concentration in vitamin D-deficient patients: a systematic review and meta-analysis

  • N. CharoenngamEmail author
  • P. Rujirachun
  • M.F. Holick
  • P. Ungprasert
Review

Abstract

Studies have suggested that vitamin D supplementation may increase serum fibroblast growth factor 23 (FGF23) among vitamin D-deficient patients although the results were inconsistent across the studies. This systematic review and meta-analysis was conducted to summarize all available data. A systematic review was conducted using MEDLINE and EMBASE database from inception to February 2019 to identify studies that provided oral vitamin D3 supplement to vitamin D-deficient participants (25-hydroxyvitamin D < 20 ng/mL). Mean serum FGF23 concentration and standard deviation of participants at baseline and after vitamin D3 supplementation were extracted to calculate standard mean difference (SMD). Pooled SMD was calculated by combining SMDs of each study using random effects model. Nine studies were eligible for the meta-analyses. Seven studies measured serum intact FGF23, and two studies measured serum C-terminal FGF23. The meta-analyses found that serum intact FGF23 increased significantly after oral vitamin D3 supplementation in vitamin D-deficient participants with the pooled SMD of 0.36 (95%CI, 0.14, 0.57; p = 0.001; I2 of 36%). Serum C-terminal FGF23 also increased after vitamin D3 supplementation in vitamin D-deficient participants with the pooled SMD of 0.28 although without reaching statistical significance (95%CI, − 0.08, 0.65; p = 0.13; I2 of 0%). Funnel plot of the meta-analysis of serum intact FGF23 did not provide a suggestive evidence for publication bias. Vitamin D supplementation leads to a significant increase in serum intact FGF23 among vitamin D-deficient patients. An increase in serum C-terminal FGF23 was also observed although the number of included studies was too small to demonstrate statistical significance. The present systematic review and meta-analysis revealed that serum intact FGF23 concentration increased significantly after oral vitamin D3 supplementation in vitamin D-deficient participants. An increase in serum C-terminal FGF23 concentration was also observed although the number of included studies was too small to demonstrate statistical significance.

Keywords

Fibroblast growth factor 23 Meta-analysis Vitamin D deficiency Vitamin D3 supplementation 

Notes

Compliance with ethical standards

Conflict of interest

Nipith Charoenngam, Pongprueth Rujirachun, and Patompong Ungprasert declare that they have no conflict of interest. Michael F. Holick is a consultant for Quest Diagnostics Inc. and Ontometrics Inc., and on the speaker’s Bureau for Abbott Inc.

References

  1. 1.
    Holick MF (2007) Vitamin D Deficiency. N Engl J Med 357(3):266–281.  https://doi.org/10.1056/NEJMra070553 CrossRefPubMedGoogle Scholar
  2. 2.
    Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 96(7):1911–1930.  https://doi.org/10.1210/jc.2011-0385 CrossRefGoogle Scholar
  3. 3.
    Holick MF (2006) Resurrection of vitamin D deficiency and rickets. J Clin Invest 116(8):2062–2072.  https://doi.org/10.1172/jci29449 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bonewald LF, Wacker MJ (2013) FGF23 production by osteocytes. Pediatr Nephrol 28(4):563–568.  https://doi.org/10.1007/s00467-012-2309-3 CrossRefPubMedGoogle Scholar
  5. 5.
    Prié D, Friedlander G (2010) Reciprocal control of 1,25-Dihydroxyvitamin D and FGF23 formation involving the FGF23/Klotho system. Clin J Am Soc Nephrol 5(9):1717–1722.  https://doi.org/10.2215/CJN.02680310 CrossRefPubMedGoogle Scholar
  6. 6.
    Erben RG (2018) Physiological actions of fibroblast growth factor-23. Front Endocrinol 9:267–267.  https://doi.org/10.3389/fendo.2018.00267 CrossRefGoogle Scholar
  7. 7.
    Lanske B, Razzaque MS (2014) Molecular interactions of FGF23 and PTH in phosphate regulation. Kidney Int 86(6):1072–1074.  https://doi.org/10.1038/ki.2014.316 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Yu X, Sabbagh Y, Davis SI, Demay MB, White KE (2005) Genetic dissection of phosphate- and vitamin D-mediated regulation of circulating Fgf23 concentrations. Bone 36(6):971–977.  https://doi.org/10.1016/j.bone.2005.03.002 CrossRefPubMedGoogle Scholar
  9. 9.
    Wahl P, Wolf M (2012) FGF23 in chronic kidney disease. Adv Exp Med Biol 728:107–125.  https://doi.org/10.1007/978-1-4614-0887-1_8 CrossRefPubMedGoogle Scholar
  10. 10.
    Kinoshita Y, Fukumoto S (2018) X-linked hypophosphatemia and FGF23-related hypophosphatemic diseases: prospect for new treatment. Endocr Rev 39(3):274–291.  https://doi.org/10.1210/er.2017-00220 CrossRefPubMedGoogle Scholar
  11. 11.
    Alshayeb H, Showkat A, Wall BM, Gyamlani GG, David V, Quarles LD (2014) Activation of FGF-23 mediated vitamin D degradative pathways by cholecalciferol. J Clin Endocrinol Metab 99(10):E1830–E1837.  https://doi.org/10.1210/jc.2014-1308 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Carvalho JTG, Schneider M, Cuppari L, Grabulosa CC, Aoike DT, Redublo BMQ, Batista MC, Cendoroglo M, Moyses RM, Dalboni MA (2017) Cholecalciferol decreases inflammation and improves vitamin D regulatory enzymes in lymphocytes in the uremic environment: a randomized controlled pilot trial. PLoS One 12(6).  https://doi.org/10.1371/journal.pone.0179540 CrossRefGoogle Scholar
  13. 13.
    De Niet S, Coffiner M, Da Silva S, Jandrain B, Souberbielle JC, Cavalier E (2018) A randomized study to compare a monthly to a daily administration of vitamin D3 supplementation. Nutrients 10(6).  https://doi.org/10.3390/nu10060659 CrossRefGoogle Scholar
  14. 14.
    Garcia-Lopes MG, Pillar R, Kamimura MA, Rocha LA, Canziani MEF, Carvalho AB, Cuppari L (2012) Cholecalciferol supplementation in chronic kidney disease: restoration of vitamin D status and impact on parathyroid hormone. Ann Nutr Metab 61(1):74–82.  https://doi.org/10.1159/000339618 CrossRefPubMedGoogle Scholar
  15. 15.
    Kamelian T, Saki F, Jeddi M, Dabbaghmanesh MH, Omrani GHR (2018) Effect of cholecalciferol therapy on serum FGF23 in vitamin D deficient patients: a randomized clinical trial. J Endocrinol Investig 41(3):299–306.  https://doi.org/10.1007/s40618-017-0739-2 CrossRefGoogle Scholar
  16. 16.
    Nygaard B, Frandsen NE, Brandi L, Rasmussen K, Oestergaard OV, Oedum L, Hoeck HC, Hansen D (2014) Effects of high doses of cholecalciferol in normal subjects: a randomized double-blinded, placebo- controlled trial. PLoS One 9(8):e102965.  https://doi.org/10.1371/journal.pone.0102965 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Turrini F, Scarlini S, Giovanardi P, Messora R, Roli L, Chester J, Mussi C, Bertolotti M, Trenti T, Bondi M (2017) Effects of cholecalciferol supplementation in patients with stable heart failure and low vitamin D levels (eCSPloiT-d): a double-blind, randomized, placebo-controlled pilot study. Minerva Cardioangiol 65(6):553–562.  https://doi.org/10.23736/S0026-4725.17.04340-7 CrossRefPubMedGoogle Scholar
  18. 18.
    Mesinovic J, Mousa A, Wilson K, Scragg R, Plebanski M, de Courten M, Scott D, Naderpoor N, de Courten B (2019) Effect of 16-weeks vitamin D replacement on calcium-phosphate homeostasis in overweight and obese adults. J Steroid Biochem Mol Biol 186:169–175.  https://doi.org/10.1016/j.jsbmb.2018.10.011 CrossRefPubMedGoogle Scholar
  19. 19.
    Trummer C, Schwetz V, Pandis M, Grübler MR, Verheyen N, Gaksch M, Zittermann A, März W, Aberer F, Steinkellner J, Friedl C, Brandenburg V, Voelkl J, Alesutan I, Obermayer-Pietsch B, Pieber TR, Tomaschitz A, Pilz S (2018) Effects of vitamin D supplementation on FGF23: a randomized-controlled trial. Eur J Nutr 58:1–7.  https://doi.org/10.1007/s00394-018-1672-7 CrossRefGoogle Scholar
  20. 20.
    Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560.  https://doi.org/10.1136/bmj.327.7414.557 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Liu S, Tang W, Zhou J, Stubbs JR, Luo Q, Pi M, Quarles LD (2006) Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J Am Soc Nephrol 17(5):1305–1315.  https://doi.org/10.1681/ASN.2005111185 CrossRefPubMedGoogle Scholar
  22. 22.
    Ito M, Sakai Y, Furumoto M, Segawa H, Haito S, Yamanaka S, Nakamura R, Kuwahata M, Miyamoto K-i (2005) Vitamin D and phosphate regulate fibroblast growth factor-23 in K-562 cells. Am J Physiol Endocrinol Metab 288(6):E1101–E1109.  https://doi.org/10.1152/ajpendo.00502.2004 CrossRefPubMedGoogle Scholar
  23. 23.
    Chesney RW, Zimmerman J, Hamstra A, DeLuca HF, Mazess RB (1981) Vitamin D metabolite concentrations in vitamin D deficiency: are calcitriol levels normal? JAMA Pediatr 135(11):1025–1028.  https://doi.org/10.1001/archpedi.1981.02130350029010 CrossRefGoogle Scholar
  24. 24.
    Fukumoto S (2014) Phosphate metabolism and vitamin D. BoneKEy Rep 3:497–497.  https://doi.org/10.1038/bonekey.2013.231 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Holick MF, Biancuzzo RM, Chen TC, Klein EK, Young A, Bibuld D, Reitz R, Salameh W, Ameri A, Tannenbaum AD (2008) Vitamin D2 is as effective as vitamin D3 in maintaining circulating concentrations of 25-hydroxyvitamin D. J Clin Endocrinol Metab 93(3):677–681.  https://doi.org/10.1210/jc.2007-2308 CrossRefPubMedGoogle Scholar
  26. 26.
    Turner C, Dalton N, Inaoui R, Fogelman I, Fraser WD, Hampson G (2013) Effect of a 300 000-IU loading dose of ergocalciferol (vitamin D2) on circulating 1,25(OH)2-vitamin D and fibroblast growth Factor-23 (FGF-23) in vitamin D insufficiency. J Clin Endocrinol Metab 98(2):550–556.  https://doi.org/10.1210/jc.2012-2790 CrossRefPubMedGoogle Scholar
  27. 27.
    Burnett-Bowie S-AM, Leder BZ, Henao MP, Baldwin CM, Hayden DL, Finkelstein JS (2012) Randomized trial assessing the effects of ergocalciferol administration on circulating FGF23. Clin J Am Soc Nephrol 7(4):624–631.  https://doi.org/10.2215/CJN.10030911 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ketteler M (2011) Phosphate metabolism in CKD stages 3-5: dietary and pharmacological control. Int J Nephrol 2011:970245–970245.  https://doi.org/10.4061/2011/970245 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2019

Authors and Affiliations

  • N. Charoenngam
    • 1
    • 2
    Email author
  • P. Rujirachun
    • 3
  • M.F. Holick
    • 2
  • P. Ungprasert
    • 4
  1. 1.Department of Medicine, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
  2. 2.Department of Medicine, Section of Endocrinology, Nutrition, and Diabetes, Vitamin D, Skin and Bone Research LaboratoryBoston University Medical CenterBostonUSA
  3. 3.Department of Microbiology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
  4. 4.Clinical Epidemiology Unit, Department of Research and Development, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand

Personalised recommendations