Advertisement

Vitamin D and cardiovascular disorders

  • R. BouillonEmail author
Review

Abstract

Vitamin D is necessary for bone health but may also have many extra-skeletal effects. The vitamin D endocrine system has major effects on gene and protein expression in many cells and tissues related to the cardiovascular system. In addition, many preclinical studies in animals with vitamin D deficiency or genetically silenced expression of the vitamin D receptor or vitamin D metabolizing enzymes suggest that the absence of vitamin D action may result in cardiovascular events. This includes dysfunctions of endothelial cells, thereby accelerating the process of atherosclerosis, hypertension or abnormal coagulation, ultimately resulting in higher risks for all major cardiovascular or cerebrovascular events. A wealth of observational studies in different parts of the world have fairly consistently found a strong association between a poor vitamin D status and surrogate markers or hard cardiovascular events. A few Mendelian randomization studies did, however, not find a link between genetically lower serum 25OHD concentrations and cardiovascular events. Finally, many RCTs could not demonstrate a consistent effect on surrogate markers, and a limited number of RCTs did so far not find whatever effect on hard cardiovascular endpoints such as myocardial ischemia or infarction, stroke, or cardiovascular death. In conclusion, preclinical data generated a plausible hypothesis of a link between vitamin D status and extra-skeletal events, including cardiovascular endpoints. Whether the vitamin D endocrine system is redundant for the human vascular system or whether the RCTs have not been optimally designed to answer the research question is thus not yet settled.

Keywords

25-Hydroxyvitamin D Cardiovascular health Mendelian randomization studies Myocardial infarction Stroke Vitamin D Vitamin D receptor 

Abbreviations

VDR

Vitamin D receptor

MI

Myocardial infarction

MR

Mendelian randomization

RCT

Randomized controlled trial

25OHD

25-Hydroxyvitamin D

1,25(OH)2D

1a,25-Dihydroxyvitamin D

CYP2R1

Major enzyme responsible for the 25-hydroxylation of vitamin D

CYP27B1

Enzyme responsible for the 1α-hydroxylation of 25OHD

CYP24A1

Enzyme responsible for the degradation of 25OHD or 1,25(OH)2D

Notes

Compliance with ethical standards

Conflict of interest

The author declares to have received lecture fees (last 2 years) from Abiogen, FAES, l’Oreal and Frisenius. He is also co-owner of a university patent on vitamin D analogs licensed to Hybrigenics (France).

References

  1. 1.
    Manolagas SC (2010) From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev 31:266–300Google Scholar
  2. 2.
    Laroche M, Pecourneau V, Blain H, Breuil V, Chapurlat R, Cortet B, Sutter B, Degboe Y, Committee Gs (2017) Osteoporosis and ischemic cardiovascular disease. Joint Bone Spine 84:427–432CrossRefPubMedGoogle Scholar
  3. 3.
    Shaffer JR, Kammerer CM, Rainwater DL, O'Leary DH, Bruder JM, Bauer RL, Mitchell BD (2007) Decreased bone mineral density is correlated with increased subclinical atherosclerosis in older, but not younger, Mexican American women and men: the San Antonio family osteoporosis study. Calcif Tissue Int 81:430–441CrossRefPubMedGoogle Scholar
  4. 4.
    Kim SN, Lee HS, Nam HS, Lee HR, Kim JM, Han SW, Park JH, Baik JS, Kim JY, Park JH (2016) Carotid intima-media thickness is inversely related to bone density in female but not in male patients with acute stroke. J Neuroimaging 26:83–88CrossRefPubMedGoogle Scholar
  5. 5.
    Barengolts EI, Berman M, Kukreja SC, Kouznetsova T, Lin C, Chomka EV (1998) Osteoporosis and coronary atherosclerosis in asymptomatic postmenopausal women. Calcif Tissue Int 62:209–213CrossRefPubMedGoogle Scholar
  6. 6.
    Marcovitz PA, Tran HH, Franklin BA, O'Neill WW, Yerkey M, Boura J, Kleerekoper M, Dickinson CZ (2005) Usefulness of bone mineral density to predict significant coronary artery disease. Am J Cardiol 96:1059–1063CrossRefPubMedGoogle Scholar
  7. 7.
    Yesil Y, Ulger Z, Halil M, Halacli B, Yavuz BB, Yesil NK, Kuyumcu ME, Cankurtaran M, Ariogul S (2012) Coexistence of osteoporosis (OP) and coronary artery disease (CAD) in the elderly: it is not just a by chance event. Arch Gerontol Geriatr 54:473–476CrossRefPubMedGoogle Scholar
  8. 8.
    Lee HT, Shin J, Min SY, Lim YH, Kim KS, Kim SG, Kim JH, Lim HK (2015) Relationship between bone mineral density and a 10-year risk for coronary artery disease in a healthy Korean population: the Korea National Health and Nutrition Examination Survey 2008-2010. Coron Artery Dis 26:66–71CrossRefPubMedGoogle Scholar
  9. 9.
    Paccou J, Edwards MH, Ward KA, Jameson KA, Moss CL, Harvey NC, Dennison EM, Cooper C (2015) Ischemic heart disease is associated with lower cortical volumetric bone mineral density of distal radius. Osteoporos Int 26:1893–1901CrossRefPubMedGoogle Scholar
  10. 10.
    Minn YK, Suk SH, Do SY (2014) Osteoporosis as an independent risk factor for silent brain infarction and white matter changes in men and women: the PRESENT project. Osteoporos Int 25:2465–2469CrossRefPubMedGoogle Scholar
  11. 11.
    Magnus JH, Broussard DL (2005) Relationship between bone mineral density and myocardial infarction in US adults. Osteoporos Int 16:2053–2062CrossRefPubMedGoogle Scholar
  12. 12.
    Ness J, Aronow WS (2006) Comparison of prevalence of atherosclerotic vascular disease in postmenopausal women with osteoporosis or osteopenia versus without osteoporosis or osteopenia. Am J Cardiol 97:1427–1428CrossRefPubMedGoogle Scholar
  13. 13.
    Zhou J, Cui X, Jin X, Zhou J, Zhang H, Tang B, Fu M, Herlitz H, Cui J, Zhu H, Sun A, Hu K, Ge J (2014) Association of renal biochemical parameters with left ventricular diastolic dysfunction in a community-based elderly population in China: a cross-sectional study. PLoS One 9:e88638CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Szulc P, Samelson EJ, Kiel DP, Delmas PD (2009) Increased bone resorption is associated with increased risk of cardiovascular events in men: the MINOS study. J Bone Miner Res 24:2023–2031CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wiklund P, Nordstrom A, Jansson JH, Weinehall L, Nordstrom P (2012) Low bone mineral density is associated with increased risk for myocardial infarction in men and women. Osteoporos Int 23:963–970CrossRefPubMedGoogle Scholar
  16. 16.
    Browner WS, Seeley DG, Vogt TM, Cummings SR (1991) Non-trauma mortality in elderly women with low bone mineral density. Study of Osteoporotic Fractures Research Group. Lancet 338:355–358CrossRefPubMedGoogle Scholar
  17. 17.
    Zhou R, Liu D, Li R, Zhou S, Cui M, Chen L, Zhou H (2015) Low bone mass is associated with stroke in Chinese postmenopausal women: the Chongqing osteoporosis study. Cell Biochem Biophys 71:1695–1701CrossRefPubMedGoogle Scholar
  18. 18.
    Collins TC, Ewing SK, Diem SJ, Taylor BC, Orwoll ES, Cummings SR, Strotmeyer ES, Ensrud KE, Osteoporotic Fractures in Men Study G (2009) Peripheral arterial disease is associated with higher rates of hip bone loss and increased fracture risk in older men. Circulation 119:2305–2312CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    von Muhlen D, Allison M, Jassal SK, Barrett-Connor E (2009) Peripheral arterial disease and osteoporosis in older adults: the rancho Bernardo study. Osteoporos Int 20:2071–2078CrossRefGoogle Scholar
  20. 20.
    Kiel DP, Kauppila LI, Cupples LA, Hannan MT, O'Donnell CJ, Wilson PW (2001) Bone loss and the progression of abdominal aortic calcification over a 25 year period: the Framingham heart study. Calcif Tissue Int 68:271–276CrossRefPubMedGoogle Scholar
  21. 21.
    Hak AE, Pols HA, van Hemert AM, Hofman A, Witteman JC (2000) Progression of aortic calcification is associated with metacarpal bone loss during menopause: a population-based longitudinal study. Arterioscler Thromb Vasc Biol 20:1926–1931CrossRefPubMedGoogle Scholar
  22. 22.
    Schulz E, Arfai K, Liu X, Sayre J, Gilsanz V (2004) Aortic calcification and the risk of osteoporosis and fractures. J Clin Endocrinol Metab 89:4246–4253CrossRefPubMedGoogle Scholar
  23. 23.
    Barzilay JI, Buzkova P, Cauley JA, Robbins JA, Fink HA, Mukamal KJ (2018) The associations of subclinical atherosclerotic cardiovascular disease with hip fracture risk and bone mineral density in elderly adults. Osteoporos Int 29:2219–2230CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ye C, Xu M, Wang S, Jiang S, Chen X, Zhou X, He R (2016) Decreased bone mineral density is an independent predictor for the development of atherosclerosis: a systematic review and meta-analysis. PLoS One 11:e0154740CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Bouillon R, Carmeliet G (2018) Vitamin D and the skeleton. In: Curr Opin Endocr Metabol Res ehead of printGoogle Scholar
  26. 26.
    Wimalawansa SJ (2018) Vitamin D and cardiovascular diseases: causality. J Steroid Biochem Mol Biol 175:29–43CrossRefPubMedGoogle Scholar
  27. 27.
    Fuleihan Gel H, Bouillon R, Clarke B, Chakhtoura M, Cooper C, McClung M, Singh RJ (2015) Serum 25-hydroxyvitamin D levels: variability, knowledge gaps, and the concept of a desirable range. J Bone Miner Res 30:1119–1133CrossRefGoogle Scholar
  28. 28.
    Bouillon R, Marcocci C, Carmeliet G et al (2018) Skeletal and extra-skeletal actions of vitamin D: current evidence and outstanding questions. Endocrine Reviews in pressGoogle Scholar
  29. 29.
    Pilz S, Verheyen N, Grubler MR, Tomaschitz A, Marz W (2016) Vitamin D and cardiovascular disease prevention. Nat Rev Cardiol 13:404–417CrossRefPubMedGoogle Scholar
  30. 30.
    Wang TJ (2016) Vitamin D and cardiovascular disease. Annu Rev Med 67:261–272CrossRefPubMedGoogle Scholar
  31. 31.
    Norman PE, Powell JT (2014) Vitamin D and cardiovascular disease. Circ Res 114:379–393CrossRefPubMedGoogle Scholar
  32. 32.
    Zittermann A (2018) Vitamin D status, supplementation and cardiovascular disease. Anticancer Res 38:1179–1186PubMedGoogle Scholar
  33. 33.
    Carvalho LS, Sposito AC (2015) Vitamin D for the prevention of cardiovascular disease: are we ready for that? Atherosclerosis 241:729–740CrossRefPubMedGoogle Scholar
  34. 34.
    Andrukhova O, Slavic S, Zeitz U, Riesen SC, Heppelmann MS, Ambrisko TD, Markovic M, Kuebler WM, Erben RG (2014) Vitamin D is a regulator of endothelial nitric oxide synthase and arterial stiffness in mice. Mol Endocrinol 28:53–64CrossRefPubMedGoogle Scholar
  35. 35.
    Wong MS, Man RY, Vanhoutte PM (2010) Calcium-independent phospholipase a(2) plays a key role in the endothelium-dependent contractions to acetylcholine in the aorta of the spontaneously hypertensive rat. Am J Physiol Heart Circ Physiol 298:H1260–H1266CrossRefPubMedGoogle Scholar
  36. 36.
    Hirata M, Serizawa K, Aizawa K, Yogo K, Tashiro Y, Takeda S, Moriguchi Y, Endo K, Fukagawa M (2013) 22-Oxacalcitriol prevents progression of endothelial dysfunction through antioxidative effects in rats with type 2 diabetes and early-stage nephropathy. Nephrol Dial Transplant 28:1166–1174CrossRefPubMedGoogle Scholar
  37. 37.
    Uberti F, Lattuada D, Morsanuto V, Nava U, Bolis G, Vacca G, Squarzanti DF, Cisari C, Molinari C (2014) Vitamin D protects human endothelial cells from oxidative stress through the autophagic and survival pathways. J Clin Endocrinol Metab 99:1367–1374CrossRefPubMedGoogle Scholar
  38. 38.
    Wong MS, Leisegang MS, Kruse C et al (2014) Vitamin D promotes vascular regeneration. Circulation 130:976–986CrossRefPubMedGoogle Scholar
  39. 39.
    Oh J, Weng S, Felton SK, Bhandare S, Riek A, Butler B, Proctor BM, Petty M, Chen Z, Schechtman KB, Bernal-Mizrachi L, Bernal-Mizrachi C (2009) 1,25(OH)2 vitamin d inhibits foam cell formation and suppresses macrophage cholesterol uptake in patients with type 2 diabetes mellitus. Circulation 120:687–698CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Yin K, You Y, Swier V, Tang L, Radwan MM, Pandya AN, Agrawal DK (2015) Vitamin D protects against atherosclerosis via regulation of cholesterol efflux and macrophage polarization in hypercholesterolemic swine. Arterioscler Thromb Vasc Biol 35:2432–2442CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Torremade N, Bozic M, Panizo S, Barrio-Vazquez S, Fernandez-Martin JL, Encinas M, Goltzman D, Arcidiacono MV, Fernandez E, Valdivielso JM (2016) Vascular calcification induced by chronic kidney disease is mediated by an increase of 1alpha-hydroxylase expression in vascular smooth muscle cells. J Bone Miner Res 31:1865–1876CrossRefPubMedGoogle Scholar
  42. 42.
    Wu-Wong JR, Nakane M, Ma J, Ruan X, Kroeger PE (2006) Effects of vitamin D analogs on gene expression profiling in human coronary artery smooth muscle cells. Atherosclerosis 186:20–28CrossRefPubMedGoogle Scholar
  43. 43.
    Wakasugi M, Noguchi T, Inoue M, Kazama Y, Tawata M, Kanemaru Y, Onaya T (1991) Vitamin D3 stimulates the production of prostacyclin by vascular smooth muscle cells. Prostaglandins 42:127–136CrossRefPubMedGoogle Scholar
  44. 44.
    Bukoski RD, DeWan P, McCarron DA (1989) 1,25 (OH)2 vitamin D3 modifies growth and contractile function of vascular smooth muscle of spontaneously hypertensive rats. Am J Hypertens 2:553–556CrossRefPubMedGoogle Scholar
  45. 45.
    Wu-Wong JR, Nakane M, Ma J (2007) Vitamin D analogs modulate the expression of plasminogen activator inhibitor-1, thrombospondin-1 and thrombomodulin in human aortic smooth muscle cells. J Vasc Res 44:11–18CrossRefPubMedGoogle Scholar
  46. 46.
    Cardus A, Panizo S, Encinas M, Dolcet X, Gallego C, Aldea M, Fernandez E, Valdivielso JM (2009) 1,25-dihydroxyvitamin D3 regulates VEGF production through a vitamin D response element in the VEGF promoter. Atherosclerosis 204:85–89CrossRefPubMedGoogle Scholar
  47. 47.
    Walters MR, Ilenchuk TT, Claycomb WC (1987) 1,25-Dihydroxyvitamin D3 stimulates 45Ca2+ uptake by cultured adult rat ventricular cardiac muscle cells. J Biol Chem 262:2536–2541PubMedGoogle Scholar
  48. 48.
    Green JJ, Robinson DA, Wilson GE, Simpson RU, Westfall MV (2006) Calcitriol modulation of cardiac contractile performance via protein kinase C. J Mol Cell Cardiol 41:350–359CrossRefPubMedGoogle Scholar
  49. 49.
    Rahman A, Hershey S, Ahmed S, Nibbelink K, Simpson RU (2007) Heart extracellular matrix gene expression profile in the vitamin D receptor knockout mice. J Steroid Biochem Mol Biol 103:416–419CrossRefPubMedGoogle Scholar
  50. 50.
    O'Connell TD, Weishaar RE, Simpson RU (1994) Regulation of myosin isozyme expression by vitamin D3 deficiency and 1,25-dihydroxyvitamin D3 in the rat heart. Endocrinology 134:899–905CrossRefPubMedGoogle Scholar
  51. 51.
    Li Q, Gardner DG (1994) Negative regulation of the human atrial natriuretic peptide gene by 1,25-dihydroxyvitamin D3. J Biol Chem 269:4934–4939PubMedGoogle Scholar
  52. 52.
    Li YC, Kong J, Wei M, Chen ZF, Liu SQ, Cao LP (2002) 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J Clin Invest 110:229–238CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Gardner DG, Chen S, Glenn DJ (2013) Vitamin D and the heart. Am J Physiol Regul Integr Comp Physiol 305:R969–R977CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Hochhauser E, Barak J, Kushnir T, Navon G, Meyer MS, Edelstein S, Ben Bassat MB, Vidne BA (1989) Mechanical, biochemical, and structural effects of vitamin D deficiency on the chick heart. Angiology 40:300–308CrossRefPubMedGoogle Scholar
  55. 55.
    Weishaar RE, Kim SN, Saunders DE, Simpson RU (1990) Involvement of vitamin D3 with cardiovascular function. III. Effects on physical and morphological properties. Am J Phys 258:E134–E142Google Scholar
  56. 56.
    Chen S, Law CS, Grigsby CL, Olsen K, Hong TT, Zhang Y, Yeghiazarians Y, Gardner DG (2011) Cardiomyocyte-specific deletion of the vitamin D receptor gene results in cardiac hypertrophy. Circulation 124:1838–1847CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Endo I, Inoue D, Mitsui T, Umaki Y, Akaike M, Yoshizawa T, Kato S, Matsumoto T (2003) Deletion of vitamin D receptor gene in mice results in abnormal skeletal muscle development with deregulated expression of myoregulatory transcription factors. Endocrinology 144:5138–5144CrossRefPubMedGoogle Scholar
  58. 58.
    Zhou C, Lu F, Cao K, Xu D, Goltzman D, Miao D (2008) Calcium-independent and 1,25(OH)2D3-dependent regulation of the renin-angiotensin system in 1alpha-hydroxylase knockout mice. Kidney Int 74:170–179CrossRefPubMedGoogle Scholar
  59. 59.
    Li YC, Qiao G, Uskokovic M, Xiang W, Zheng W, Kong J (2004) Vitamin D: a negative endocrine regulator of the renin-angiotensin system and blood pressure. J Steroid Biochem Mol Biol 89-90:387–392CrossRefPubMedGoogle Scholar
  60. 60.
    Yuan W, Pan W, Kong J, Zheng W, Szeto FL, Wong KE, Cohen R, Klopot A, Zhang Z, Li YC (2007) 1,25-Dihydroxyvitamin D3 suppresses renin gene transcription by blocking the activity of the cyclic AMP response element in the renin gene promoter. J Biol Chem 282:29821–29830CrossRefPubMedGoogle Scholar
  61. 61.
    Sundersingh F, Plum LA, DeLuca HF (2015) Vitamin D deficiency independent of hypocalcemia elevates blood pressure in rats. Biochem Biophys Res Commun 461:589–591CrossRefPubMedGoogle Scholar
  62. 62.
    Aihara K, Azuma H, Akaike M, Ikeda Y, Yamashita M, Sudo T, Hayashi H, Yamada Y, Endoh F, Fujimura M, Yoshida T, Yamaguchi H, Hashizume S, Kato M, Yoshimura K, Yamamoto Y, Kato S, Matsumoto T (2004) Disruption of nuclear vitamin D receptor gene causes enhanced thrombogenicity in mice. J Biol Chem 279:35798–35802CrossRefPubMedGoogle Scholar
  63. 63.
    Zhang Y, Leung DY, Richers BN, Liu Y, Remigio LK, Riches DW, Goleva E (2012) Vitamin D inhibits monocyte/macrophage proinflammatory cytokine production by targeting MAPK phosphatase-1. J Immunol 188:2127–2135CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Helming L, Bose J, Ehrchen J, Schiebe S, Frahm T, Geffers R, Probst-Kepper M, Balling R, Lengeling A (2005) 1alpha,25-Dihydroxyvitamin D3 is a potent suppressor of interferon gamma-mediated macrophage activation. Blood 106:4351–4358CrossRefPubMedGoogle Scholar
  65. 65.
    Vanherwegen AS, Gysemans C, Mathieu C (2017) Regulation of immune function by vitamin D and its use in diseases of immunity. Endocrinol Metab Clin N Am 46:1061–1094CrossRefGoogle Scholar
  66. 66.
    Kasuga H, Hosogane N, Matsuoka K, Mori I, Sakura Y, Shimakawa K, Shinki T, Suda T, Taketomi S (2002) Characterization of transgenic rats constitutively expressing vitamin D-24-hydroxylase gene. Biochem Biophys Res Commun 297:1332–1338CrossRefPubMedGoogle Scholar
  67. 67.
    Bouillon R, Carmeliet G, Lieben L, Watanabe M, Perino A, Auwerx J, Schoonjans K, Verstuyf A (2014) Vitamin D and energy homeostasis in mice and men. Nat Rev Endocrinol 10:79–87CrossRefPubMedGoogle Scholar
  68. 68.
    Lin SH, Lin YF, Lu KC, Diang LK, Chyr SH, Liao WK, Shieh SD (1994) Effects of intravenous calcitriol on lipid profiles and glucose tolerance in uraemic patients with secondary hyperparathyroidism. Clin Sci (Lond) 87:533–538CrossRefGoogle Scholar
  69. 69.
    Wehmeier K, Beers A, Haas MJ, Wong NC, Steinmeyer A, Zugel U, Mooradian AD (2005) Inhibition of apolipoprotein AI gene expression by 1, 25-dihydroxyvitamin D3. Biochim Biophys Acta 1737:16–26CrossRefPubMedGoogle Scholar
  70. 70.
    Farzaneh-Far A, Weissberg PL, Proudfoot D, Shanahan CM (2001) Transcriptional regulation of matrix gla protein. Z Kardiol 90(Suppl 3):38–42PubMedGoogle Scholar
  71. 71.
    Han MS, Che X, Cho GH, Park HR, Lim KE, Park NR, Jin JS, Jung YK, Jeong JH, Lee IK, Kato S, Choi JY (2013) Functional cooperation between vitamin D receptor and Runx2 in vitamin D-induced vascular calcification. PLoS One 8:e83584CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    McCabe KM, Zelt JG, Kaufmann M, Laverty K, Ward E, Barron H, Jones G, Adams MA, Holden RM (2018) Calcitriol accelerates vascular calcification irrespective of vitamin K status in a rat model of chronic kidney disease with hyperphosphatemia and secondary hyperparathyroidism. J Pharmacol Exp Ther 366:433–445CrossRefPubMedGoogle Scholar
  73. 73.
    Shi Y, Lu W, Hou Y, Fu K, Gan F, Liu J (2018) Fibroblast growth factor 21 ameliorates vascular calcification by inhibiting osteogenic transition in vitamin D3 plus nicotine-treated rats. Biochem Biophys Res Commun 495:2448–2455CrossRefPubMedGoogle Scholar
  74. 74.
    Vogiatzi MG, Jacobson-Dickman E, De Boer MD, Drugs, Therapeutics Committee of The Pediatric Endocrine S (2014) Vitamin D supplementation and risk of toxicity in pediatrics: a review of current literature. J Clin Endocrinol Metab 99:1132–1141CrossRefPubMedGoogle Scholar
  75. 75.
    Ke L, Mason RS, Kariuki M, Mpofu E, Brock KE (2015) Vitamin D status and hypertension: a review. Integrated Blood Press Control 8:13–35Google Scholar
  76. 76.
    Wang L, Song Y, Manson JE et al (2012) Circulating 25-hydroxy-vitamin D and risk of cardiovascular disease: a meta-analysis of prospective studies. Circ Cardiovasc Qual Outcomes 5:819–829CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Leu M, Giovannucci E (2011) Vitamin D: epidemiology of cardiovascular risks and events. Best Pract Res Clin Endocrinol Metab 25:633–646CrossRefPubMedGoogle Scholar
  78. 78.
    Anderson JL, May HT, Horne BD, Bair TL, Hall NL, Carlquist JF, Lappe DL, Muhlestein JB, Intermountain Heart Collaborative Study G (2010) Relation of vitamin D deficiency to cardiovascular risk factors, disease status, and incident events in a general healthcare population. Am J Cardiol 106:963–968CrossRefPubMedGoogle Scholar
  79. 79.
    Wang TJ, Pencina MJ, Booth SL, Jacques PF, Ingelsson E, Lanier K, Benjamin EJ, D'Agostino RB, Wolf M, Vasan RS (2008) Vitamin D deficiency and risk of cardiovascular disease. Circulation 117:503–511CrossRefPubMedGoogle Scholar
  80. 80.
    Forman JP, Giovannucci E, Holmes MD, Bischoff-Ferrari HA, Tworoger SS, Willett WC, Curhan GC (2007) Plasma 25-hydroxyvitamin D levels and risk of incident hypertension. Hypertension 49:1063–1069CrossRefPubMedGoogle Scholar
  81. 81.
    Giovannucci E, Liu Y, Hollis BW, Rimm EB (2008) 25-hydroxyvitamin D and risk of myocardial infarction in men: a prospective study. Arch Intern Med 168:1174–1180CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Brondum-Jacobsen P, Benn M, Jensen GB, Nordestgaard BG (2012) 25-hydroxyvitamin d levels and risk of ischemic heart disease, myocardial infarction, and early death: population-based study and meta-analyses of 18 and 17 studies. Arterioscler Thromb Vasc Biol 32:2794–2802CrossRefPubMedGoogle Scholar
  83. 83.
    Al-Khalidi B, Kimball SM, Rotondi MA, Ardern CI (2017) Standardized serum 25-hydroxyvitamin D concentrations are inversely associated with cardiometabolic disease in U.S. adults: a cross-sectional analysis of NHANES, 2001-2010. Nutr J 16:16CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Melamed ML, Muntner P, Michos ED, Uribarri J, Weber C, Sharma J, Raggi P (2008) Serum 25-hydroxyvitamin D levels and the prevalence of peripheral arterial disease: results from NHANES 2001 to 2004. Arterioscler Thromb Vasc Biol 28:1179–1185CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Robinson-Cohen C, Hoofnagle AN, Ix JH, Sachs MC, Tracy RP, Siscovick DS, Kestenbaum BR, de Boer IH (2013) Racial differences in the association of serum 25-hydroxyvitamin D concentration with coronary heart disease events. JAMA 310:179–188CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Perna L, Schottker B, Holleczek B, Brenner H (2013) Serum 25-hydroxyvitamin D and incidence of fatal and nonfatal cardiovascular events: a prospective study with repeated measurements. J Clin Endocrinol Metab 98:4908–4915CrossRefPubMedGoogle Scholar
  87. 87.
    Kuhn T, Kaaks R, Teucher B, Hirche F, Dierkes J, Weikert C, Katzke V, Boeing H, Stangl GI, Buijsse B (2013) Plasma 25-hydroxyvitamin D and its genetic determinants in relation to incident myocardial infarction and stroke in the European prospective investigation into cancer and nutrition (EPIC)-Germany study. PLoS One 8:e69080CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Fiscella K, Franks P (2010) Vitamin D, race, and cardiovascular mortality: findings from a national US sample. Ann Fam Med 8:11–18CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Kestenbaum B, Katz R, de Boer I, Hoofnagle A, Sarnak MJ, Shlipak MG, Jenny NS, Siscovick DS (2011) Vitamin D, parathyroid hormone, and cardiovascular events among older adults. J Am Coll Cardiol 58:1433–1441CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Gaksch M, Jorde R, Grimnes G, Joakimsen R, Schirmer H, Wilsgaard T, Mathiesen EB, Njølstad I, Løchen ML, März W, Kleber ME, Tomaschitz A, Grübler M, Eiriksdottir G, Gudmundsson EF, Harris TB, Cotch MF, Aspelund T, Gudnason V, Rutters F, Beulens JWJ, van ‘t Riet E, Nijpels G, Dekker JM, Grove-Laugesen D, Rejnmark L, Busch MA, Mensink GBM, Scheidt-Nave C, Thamm M, Swart KMA, Brouwer IA, Lips P, van Schoor NM, Sempos CT, Durazo-Arvizu RA, Škrabáková Z, Dowling KG, Cashman KD, Kiely M, Pilz S (2017) Vitamin D and mortality: individual participant data meta-analysis of standardized 25-hydroxyvitamin D in 26916 individuals from a European consortium. PLoS One 12:e0170791CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Tomson J, Emberson J, Hill M, Gordon A, Armitage J, Shipley M, Collins R, Clarke R (2013) Vitamin D and risk of death from vascular and non-vascular causes in the Whitehall study and meta-analyses of 12,000 deaths. Eur Heart J 34:1365–1374CrossRefPubMedGoogle Scholar
  92. 92.
    Autier P, Boniol M, Pizot C, Mullie P (2014) Vitamin D status and ill health: a systematic review. Lancet Diabetes Endocrinol 2:76–89CrossRefPubMedGoogle Scholar
  93. 93.
    Theodoratou E, Tzoulaki I, Zgaga L, Ioannidis JP (2014) Vitamin D and multiple health outcomes: umbrella review of systematic reviews and meta-analyses of observational studies and randomised trials. BMJ 348:g2035CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Zhang R, Li B, Gao X, Tian R, Pan Y, Jiang Y, Gu H, Wang Y, Wang Y, Liu G (2017) Serum 25-hydroxyvitamin D and the risk of cardiovascular disease: dose-response meta-analysis of prospective studies. Am J Clin Nutr 105:810–819CrossRefPubMedGoogle Scholar
  95. 95.
    Zhou R, Wang M, Huang H, Li W, Hu Y, Wu T (2018) Lower vitamin D status is associated with an increased risk of ischemic stroke: a systematic review and Meta-analysis. Nutrients 10:27Google Scholar
  96. 96.
    Alele JD, Luttrell LM, Hollis BW, Luttrell DK, Hunt KJ, Group VS (2013) Relationship between vitamin D status and incidence of vascular events in the veterans affairs diabetes trial. Atherosclerosis 228:502–507CrossRefPubMedGoogle Scholar
  97. 97.
    Welsh P, Doolin O, McConnachie A, Boulton E, McNeil G, Macdonald H, Hardcastle A, Hart C, Upton M, Watt G, Sattar N (2012) Circulating 25OHD, dietary vitamin D, PTH, and calcium associations with incident cardiovascular disease and mortality: the MIDSPAN family study. J Clin Endocrinol Metab 97:4578–4587CrossRefPubMedGoogle Scholar
  98. 98.
    Bouillon R (2017) Genetic and racial differences in the vitamin D endocrine system. Endocrinol Metab Clin N Am 46:1119–1135CrossRefGoogle Scholar
  99. 99.
    Manousaki D, Mokry LE, Ross S, Goltzman D, Richards JB (2016) Mendelian randomization studies Do not support a role for vitamin D in coronary artery disease. Circ Cardiovasc Genet 9:349–356CrossRefPubMedGoogle Scholar
  100. 100.
    Brondum-Jacobsen P, Benn M, Afzal S, Nordestgaard BG (2015) No evidence that genetically reduced 25-hydroxyvitamin D is associated with increased risk of ischaemic heart disease or myocardial infarction: a Mendelian randomization study. Int J Epidemiol 44:651–661CrossRefPubMedGoogle Scholar
  101. 101.
    Leong A, Rehman W, Dastani Z, Greenwood C, Timpson N, Langsetmo L, Berger C, METASTROKE, Fu L, Wong BYL, Malik S, Malik R, Hanley DA, Cole DEC, Goltzman D, Richards JB (2014) The causal effect of vitamin D binding protein (DBP) levels on calcemic and cardiometabolic diseases: a Mendelian randomization study. PLoS Med 11:e1001751CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Vimaleswaran KS, Cavadino A, Berry DJ, LifeLines Cohort Study investigators, Jorde R, Dieffenbach AK, Lu C, Alves AC, Heerspink HJ, Tikkanen E, Eriksson J, Wong A, Mangino M, Jablonski KA, Nolte IM, Houston DK, Ahluwalia TS, van der Most P, Pasko D, Zgaga L, Thiering E, Vitart V, Fraser RM, Huffman JE, de Boer RA, Schöttker B, Saum KU, McCarthy M, Dupuis J, Herzig KH, Sebert S, Pouta A, Laitinen J, Kleber ME, Navis G, Lorentzon M, Jameson K, Arden N, Cooper JA, Acharya J, Hardy R, Raitakari O, Ripatti S, Billings LK, Lahti J, Osmond C, Penninx BW, Rejnmark L, Lohman KK, Paternoster L, Stolk RP, Hernandez DG, Byberg L, Hagström E, Melhus H, Ingelsson E, Mellström D, Ljunggren O, Tzoulaki I, McLachlan S, Theodoratou E, Tiesler CM, Jula A, Navarro P, Wright AF, Polasek O, International Consortium for Blood Pressure (ICBP), Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, Global Blood Pressure Genetics (Global BPGen) consortium, Caroline Hayward, Wilson JF, Rudan I, Salomaa V, Heinrich J, Campbell H, Price JF, Karlsson M, Lind L, Michaëlsson K, Bandinelli S, Frayling TM, Hartman CA, Sørensen TI, Kritchevsky SB, Langdahl BL, Eriksson JG, Florez JC, Spector TD, Lehtimäki T, Kuh D, Humphries SE, Cooper C, Ohlsson C, März W, de Borst MH, Kumari M, Kivimaki M, Wang TJ, Power C, Brenner H, Grimnes G, van der Harst P, Snieder H, Hingorani AD, Pilz S, Whittaker JC, Järvelin MR, Hyppönen E (2014) Association of vitamin D status with arterial blood pressure and hypertension risk: a Mendelian randomisation study. Lancet Diabetes Endocrinol 2:719–729CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Skaaby T, Husemoen LL, Martinussen T et al (2013) Vitamin D status, filaggrin genotype, and cardiovascular risk factors: a Mendelian randomization approach. PLoS One 8:e57647CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Ooi EM, Afzal S, Nordestgaard BG (2014) Elevated remnant cholesterol in 25-hydroxyvitamin D deficiency in the general population: Mendelian randomization study. Circ Cardiovasc Genet 7:650–658CrossRefPubMedGoogle Scholar
  105. 105.
    Stojanovic M, Radenkovic M (2015) Vitamin D versus placebo in improvement of endothelial dysfunction: a meta-analysis of randomized clinical trials. Cardiovasc Ther 33:145–154CrossRefPubMedGoogle Scholar
  106. 106.
    Hussin AM, Ashor AW, Schoenmakers I, Hill T, Mathers JC, Siervo M (2017) Effects of vitamin D supplementation on endothelial function: a systematic review and meta-analysis of randomised clinical trials. Eur J Nutr 56:1095–1104CrossRefPubMedGoogle Scholar
  107. 107.
    Witham MD, Nadir MA, Struthers AD (2009) Effect of vitamin D on blood pressure: a systematic review and meta-analysis. J Hypertens 27:1948–1954CrossRefPubMedGoogle Scholar
  108. 108.
    Wu SH, Ho SC, Zhong L (2010) Effects of vitamin D supplementation on blood pressure. South Med J 103:729–737CrossRefPubMedGoogle Scholar
  109. 109.
    Pittas AG, Chung M, Trikalinos T, Mitri J, Brendel M, Patel K, Lichtenstein AH, Lau J, Balk EM (2010) Systematic review: vitamin D and cardiometabolic outcomes. Ann Intern Med 152:307–314CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Beveridge LA, Struthers AD, Khan F, Jorde R, Scragg R, Macdonald HM, Alvarez JA, Boxer RS, Dalbeni A, Gepner AD, Isbel NM, Larsen T, Nagpal J, Petchey WG, Stricker H, Strobel F, Tangpricha V, Toxqui L, Vaquero MP, Wamberg L, Zittermann A, Witham MD, D-PRESSURE Collaboration (2015) Effect of vitamin D supplementation on blood pressure: a systematic review and Meta-analysis incorporating individual patient data. JAMA Intern Med 175:745–754CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Hsia J, Heiss G, Ren H, Allison M, Dolan NC, Greenland P, Heckbert SR, Johnson KC, Manson JE, Sidney S, Trevisan M, Women's Health Initiative Investigators (2007) Calcium/vitamin D supplementation and cardiovascular events. Circulation 115:846–854CrossRefPubMedGoogle Scholar
  112. 112.
    Bolland MJ, Grey A, Avenell A, Gamble GD, Reid IR (2011) Calcium supplements with or without vitamin D and risk of cardiovascular events: reanalysis of the Women's Health Initiative limited access dataset and meta-analysis. BMJ 342:d2040CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Elamin MB, Abu Elnour NO, Elamin KB, Fatourechi MM, Alkatib AA, Almandoz JP, Liu H, Lane MA, Mullan RJ, Hazem A, Erwin PJ, Hensrud DD, Murad MH, Montori VM (2011) Vitamin D and cardiovascular outcomes: a systematic review and meta-analysis. J Clin Endocrinol Metab 96:1931–1942CrossRefPubMedGoogle Scholar
  114. 114.
    Bolland MJ, Grey A, Gamble GD, Reid IR (2014) The effect of vitamin D supplementation on skeletal, vascular, or cancer outcomes: a trial sequential meta-analysis. Lancet Diabetes Endocrinol 2:307–320CrossRefPubMedGoogle Scholar
  115. 115.
    Ford JA, GS ML, Avenell A, Bolland M, Grey A, Witham M, Group RT (2014) Cardiovascular disease and vitamin D supplementation: trial analysis, systematic review, and meta-analysis. Am J Clin Nutr 100:746–755CrossRefPubMedGoogle Scholar
  116. 116.
    Wang L, Manson JE, Song Y, Sesso HD (2010) Systematic review: vitamin D and calcium supplementation in prevention of cardiovascular events. Ann Intern Med 152:315–323CrossRefPubMedGoogle Scholar
  117. 117.
    Bjelakovic G, Gluud LL, Nikolova D, Whitfield K, Wetterslev J, Simonetti RG, Bjelakovic M, Gluud C (2014) Vitamin D supplementation for prevention of mortality in adults. Cochrane Database Syst Rev:CD007470Google Scholar
  118. 118.
    Scragg R, Stewart AW, Waayer D, Lawes CM, Toop L, Sluyter J, Murphy J, Khaw KT, Camargo CA Jr (2017) Effect of monthly high-dose vitamin D supplementation on cardiovascular disease in the vitamin D assessment study : a randomized clinical trial. JAMA Cardiol 2:608–616CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Mao PJ, Zhang C, Tang L, Xian YQ, Li YS, Wang WD, Zhu XH, Qiu HL, He J, Zhou YH (2013) Effect of calcium or vitamin D supplementation on vascular outcomes: a meta-analysis of randomized controlled trials. Int J Cardiol 169:106–111CrossRefPubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2019

Authors and Affiliations

  1. 1.Clinical & Experimental Endocrinology, Department Chronic Diseases, Metabolism and AgeingKU LeuvenLeuvenBelgium

Personalised recommendations