Advertisement

Bone mass density and bone metabolism marker are associated with progression of carotid and cardiac calcified plaque in Chinese elderly population

  • D. Liu
  • L. Chen
  • S. Dong
  • Z. Peng
  • H. Yang
  • Y. Chen
  • L. Li
  • H. Zhou
  • R. ZhouEmail author
Original Article
  • 55 Downloads

Abstract

Summary

Osteoporosis and cardiovascular diseases often coexist in the same elderly individuals. Does this suggest some potential correlation between the two diseases? Low bone mass and change of bone biomarker are associated with a higher risk of carotid and cardiac calcification plaques.

Introduction

Bone mineral density (BMD) and bone metabolism marker may contribute to the progression of carotid and cardiac arterial calcifications. The aim of this study was to investigate whether low bone mass and the change of bone biomarker are associated with the prevalence of calcified atherosclerotic plaque in elderly Chinese.

Methods

We conducted a five-year prospective study. BMD was measured by dual-energy X-ray absorptiometry scanning. Carotid and cardiac computed tomography angiography (CTA) was conducted using a 64-multidetector row scanner to assess carotid and cardiac arterial plaque at baseline and during follow-up.

Results

Of 1571 community residents over 60 years of age, 184 (11.7%) subjects developed carotid calcified plaque, 510 (32.5%) subjects developed cardiac calcified plaque and 97 (6.2%) subjects developed co-existence calcified plaques in carotid and cardiac arteries. After adjustment for age and all relevant confounders, Q1, Q2 quartile of BMD, and osteoprotegerin (OPG), osteocalcin (OC), and C-terminal cross-linked telopeptide of type I collagen (CTX) were associated with increased risk of calcified plaques.

Conclusion

This study suggested that lower BMD and change of bone metabolism biomarker were associated with a higher risk of carotid and cardiac calcified plaque development.

Keywords

Bone metabolism marker Bone mineral density Calcified plaque Cardiac artery Carotid artery 

Notes

Funding

This study was supported by grants from the National Natural Science Foundation of China (8160090461) and the Excellent Youth Fund of Third Military Medical University (2017YQRC-04).

Compliance with ethical standards

Conflict of interest

None.

References

  1. 1.
    Kanis JA (2002) Diagnosis of osteoporosis and assessment of fracture risk. Lancet 359(9321):1929–1936CrossRefGoogle Scholar
  2. 2.
    Wiklund P, Nordström A, Jansson JH, Weinehall L, Nordström P (2012) Low bone mineral density is associated with increased risk for myocardial infarction in men and women. Osteoporos Int 23(3):963–970CrossRefGoogle Scholar
  3. 3.
    Shen C, Deng J, Zhou R, Chen J, Fan S, Li Z, Hu Y, Zhong Q (2012) Relation between bone mineral density, bone loss and the risk of cardiovascular disease in a Chinese cohort. Am J Cardiol 110(8):1138–1142CrossRefGoogle Scholar
  4. 4.
    Demer LL, Yin T (2008) Vascular calcification pathobiology of a multifaceted disease. Circulation 117(22):2938–2948CrossRefGoogle Scholar
  5. 5.
    Wagenknecht LE, Divers J, Register TC, Russell GB, Bowden DW, Xu J, Langefeld CD, Lenchik L, Hruska KA, Carr JJ, Freedman BI (2016) Bone mineral density and progression of subclinical atherosclerosis in African Americans with type 2 diabetes. J Clin Endocrinol Metab 101(11):4135–4141CrossRefGoogle Scholar
  6. 6.
    Kiechl S, Schett G, Wenning G, Redlich K, Oberhollenzer M, Mayr A, Santer P, Smolen J, Poewe W, Willeit J (2004) Osteoprotegerin is a risk factor for progressive atherosclerosis and cardiovascular disease. Circulation 109(18):2175–2180CrossRefGoogle Scholar
  7. 7.
    Ueland T, Jemtland R, Godang K, Kjekshus J, Hognestad A, Omland T, Squire IB, Gullestad L, Bollerslev J, Dickstein K, Aukrust P (2004) Prognostic value of osteoprotegerin in heart failure after acute myocardial infarction. J Am Coll Cardiol 44(10):1970–1976CrossRefGoogle Scholar
  8. 8.
    Yang R, Ma X, Dou J, Wang F, Luo Y, Li D, Zhu J, Bao Y, Jia W (2013) Relationship between serum osteocalcin levels and carotid intima-media thickness in Chinese postmenopausal women. Menopause 20(11):1194–1199CrossRefGoogle Scholar
  9. 9.
    Kim KM, Lim S, Moon JH, Jin H, Jung KY, Shin CS, Park KS, Jang HC, Choi SH (2016) Lower uncarboxylated osteocalcin and higher sclerostin levels are significantly associated with coronary artery disease. Bone 83:178–183CrossRefGoogle Scholar
  10. 10.
    Leli C, Pasqualini L, Vaudo G, Gaggioli S, Scarponi AM, Mannarino E (2010) Carotid intima-media thickness and bone turnover: the role of C-terminal telopeptide of type I collagen. Intern Emerg Med 5(2):127–134CrossRefGoogle Scholar
  11. 11.
    Yeap BB, Alfonso H, Chubb SA, Byrnes E, Beilby JP, Ebeling PR, Allan CA, Schultz C, Hankey GJ, Golledge J, Flicker L, Norman PE (2015) Proportion of undercarboxylated osteocalcin and serum P1NP predict incidence of myocardial infarction in older men. J Clin Endocrinol Metab 100(10):3934–3942CrossRefGoogle Scholar
  12. 12.
    Freedman BI, Wagenknecht LE, Hairston KG, Bowden DW, Carr JJ, Hightower RC, Gordon EJ, Xu J, Langefeld CD, Divers J (2010) Vitamin D, adiposity, and calcified atherosclerotic plaque in African-Americans. J Clin Endocrinol Metab 95(3):1076–1083CrossRefGoogle Scholar
  13. 13.
    Johnsen SH, Mathiesen EB, Joakimsen O, Stensland E, Wilsgaard T, Løchen ML, Njølstad I, Arnesen E (2007) Carotid atherosclerosis is a stronger predictor of myocardial infarction in women than in men: a 6-year follow-up study of 6226 persons: the Tromso Study. Stroke 38:2873–2880CrossRefGoogle Scholar
  14. 14.
    Divers J, Register TC, Langefeld CD, Wagenknecht LE, Bowden DW, Carr JJ, Hightower RC, Xu J, Hruska KA, Freedman BI (2011) Relationships between calcified atherosclerotic plaque and bone mineral density in African Americans with type 2 diabetes. J Bone Miner Res 26(7):1554–1560CrossRefGoogle Scholar
  15. 15.
    Carr JJ, Register TC, Hsu FC, Lohman K, Lenchik L, Bowden DW, Langefeld CD, Xu J, Rich SS, Wagenknecht LE, Freedman BI (2008) Calcified atherosclerotic plaque and bone mineral density in type 2 diabetes: the diabetes heart study. Bone 42(1):43–52CrossRefGoogle Scholar
  16. 16.
    Jorgensen L, Joakimsen O, Rosvold Berntsen GK, Heuch I, Jacobsen BK (2004) Low bone mineral density is related to echogenic carotid artery plaques: a population-based study. Am J Epidemiol 160(6):549–556CrossRefGoogle Scholar
  17. 17.
    Tamaki J, Iki M, Hirano Y, Sato Y, Kajita E, Kagamimori S, Kagawa Y, Yoneshima H (2009) Low bone mass is associated with carotid atherosclerosis in postmenopausal women: the Japanese Population-Based Osteoporosis (JPOS) Cohort Study. Osteoporos Int 20(1):53–60CrossRefGoogle Scholar
  18. 18.
    Jensky NE, Hyder JA, Allison MA, Wong N, Aboyans V, Blumenthal RS, Schreiner P, Carr JJ, Wassel CL, Ix JH, Criqui MH (2011) The association of bone density and calcified atherosclerosis is stronger in women without dyslipidemia: the multi-ethnic study of atherosclerosis. J Bone Miner Res 26(11):2702–2709CrossRefGoogle Scholar
  19. 19.
    Lin T, Liu JC, Chang LY, Shen CW (2011) Association between coronary artery calcification using low-dose MDCT coronary angiography and bone mineral density in middle-aged men and women. Osteoporos Int 22(2):627–634CrossRefGoogle Scholar
  20. 20.
    Montagnana M, Lippi G, Danese E, Guidi GC (2013) The role of osteoprotegerin in cardiovascular disease. Ann Med 45:254–264CrossRefGoogle Scholar
  21. 21.
    Venuraju SM, Yerranasu A, Corder R, Lahiri A (2010) Osteoprotegerin as a predictor of coronary artery disease and cardiovascular mortality and morbidity. J Am Coll Cardiol 55:2049–2061CrossRefGoogle Scholar
  22. 22.
    Fu YX, Gu JH, Zhang YR, Tong XS, Zhao HY, Yuan Y, Liu XZ, Bian JC, Liu ZP (2013) Osteoprotegerin influences the bone resorption activity of osteoclasts. Int J Mol Med 31(6):1411–1417CrossRefGoogle Scholar
  23. 23.
    Vik A, Mathiesen EB, Notø AT, Sveinbjørnsson B, Brox J, Hansen JB (2007) Serum osteoprotegerin is inversely associated with carotid plaque echogenicity in humans. Atherosclerosis 191(1):128–134CrossRefGoogle Scholar
  24. 24.
    Callegari A, Coons ML, Ricks JL, Yang HL, Gross TS, Huber P, Rosenfeld ME, Scatena M (2013) Bone marrow- or vessel wall-derived osteoprotegerin is sufficient to reduce atherosclerotic lesion size and vascular calcification. Arterioscler Thromb Vasc Biol 33(11):2491–2500CrossRefGoogle Scholar
  25. 25.
    Mizokami A, Kawakubo-Yasukochi T, Hirata M (2017) Osteocalcin and its endocrine functions. Biochem Pharmacol 132:1–8CrossRefGoogle Scholar
  26. 26.
    Ferron M, Lacombe J (2014) Regulation of energy metabolism by the skeleton: osteocalcin and beyond. Arch Biochem Biophys 561:137–146CrossRefGoogle Scholar
  27. 27.
    Lacombe J, Karsenty G, Ferron M (2013) In vivo analysis of the contribution of bone resorption to the control of glucose metabolism in mice. Mol Metab 2(4):498–504CrossRefGoogle Scholar
  28. 28.
    Schwartz AV, Schafer AL, Grey A, Vittinghoff E, Palermo L, Lui LY, Wallace RB, Cummings SR, Black DM, Bauer DC, Reid IR (2013) Effects of antiresorptive therapies on glucose metabolism: results from the FIT, HORIZON-PFT, and FREEDOM trials. J Bone Miner Res 28(6):1348–1354CrossRefGoogle Scholar
  29. 29.
    Ling Y, Wang Z, Wu B, Gao X (2017) Association of bone metabolism markers with coronary atherosclerosis and coronary artery disease in postmenopausal women. J Bone Miner Metab 36(3):352–363CrossRefGoogle Scholar
  30. 30.
    Barascuk N, Skjøt-Arkil H, Register TC, Larsen L, Byrjalsen I, Christiansen C, Karsdal MA (2010) Human macrophage foam cells degrade atherosclerotic plaques through cathepsin K mediated processes. BMC Cardiovasc Disord 10:19CrossRefGoogle Scholar
  31. 31.
    Bouillon R, Norman AW, Lips P (2007) Vitamin D deficiency. N Engl J Med 357(19):1980–1981CrossRefGoogle Scholar
  32. 32.
    Grübler MR, März W, Pilz S, Grammer TB, Trummer C, Müllner C, Schwetz V, Pandis M, Verheyen N, Tomaschitz A, Fiordelisi A, Laudisio D, Cipolletta E, Iaccarino G (2017) Vitamin-D concentrations, cardiovascular risk and events - a review of epidemiological evidence. Rev Endocr Metab Disord 18(2):259–272CrossRefGoogle Scholar
  33. 33.
    Lee S, Ahuja V, Masaki K, Evans RW, Barinas-Mitchell EJ, Ueshima H, Shin C, Choo J, Hassen L, Edmundowicz D, Kuller LH, Willcox B, Sekikawa A (2016) A significant positive association of vitamin D deficiency with coronary artery calcification among middle-aged men: for the ERA JUMP study. J Am Coll Nutr 35(7):614–620CrossRefGoogle Scholar
  34. 34.
    Kamycheva E, Johnsen SH, Wilsgaard T, Jorde R, Mathiesen EB (2013) Evaluation of serum 25-hydroxyvitamin D as a predictor of carotid intima-media thickness and carotid total plaque area in nonsmokers: the Tromsø Study. Int J Endocrinol 2013:305141CrossRefGoogle Scholar
  35. 35.
    Gepner AD, Colangelo LA, Blondon M, Korcarz CE, de Boer IH, Kestenbaum B, Siscovick DS, Kaufman JD, Liu K, Stein JH (2014) 25-hydroxyvitamin D and parathyroid hormone levels do not predict changes in carotid arterial stiffness: the multi-ethnic study of atherosclerosis. Arterioscler Thromb Vasc Biol 34(5):1102–1109CrossRefGoogle Scholar
  36. 36.
    Aksoy Y, Yagmur C, Tekin GO, Yagmur J, Topal E, Kekilli E, Turhan H, Kosar F, Yetkin E (2005) Aortic valve calcification: association with bone mineral density and cardiovascular risk factors. Coron Artery Dis 16(6):379–383CrossRefGoogle Scholar
  37. 37.
    Dweck MR, Khaw HJ, Sng GK, Luo EL, Baird A, Williams MC, Makiello P, Mirsadraee S, Joshi NV, van Beek EJ, Boon NA, Rudd JH, Newby DE (2013) Aortic stenosis, atherosclerosis, and skeletal bone: is there a common link with calcification and inflammation? Eur Heart J 34(21):1567–1574CrossRefGoogle Scholar
  38. 38.
    Ferreira-González I, Pinar-Sopena J, Ribera A, Marsal JR, Cascant P, González-Alujas T, Evangelista A, Brotons C, Moral I, Permanyer-Miralda G, García-Dorado D, Tornos P (2013) Prevalence of calcific aortic valve disease in the elderly and associated risk factors: a population-based study in a Mediterranean area. Eur J Prev Cardiol 20(6):1022–1030CrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2019

Authors and Affiliations

  • D. Liu
    • 1
  • L. Chen
    • 2
  • S. Dong
    • 2
  • Z. Peng
    • 3
  • H. Yang
    • 3
  • Y. Chen
    • 3
  • L. Li
    • 3
  • H. Zhou
    • 3
  • R. Zhou
    • 4
    Email author
  1. 1.Trauma Center, Daping HospitalThird Military Medical UniversityChongqingChina
  2. 2.Postgraduate SchoolBengbu Medical CollegeBengbuChina
  3. 3.Department of Neurology, Daping HospitalThird Military Medical UniversityChongqingChina
  4. 4.Department of Orthopedics, the Orthopedic Surgery Center of Chinese PLA, Southwest HospitalThird Military Medical UniversityChongqingPeople’s Republic of China

Personalised recommendations