Advertisement

Gut microbiota composition and bone mineral loss—epidemiologic evidence from individuals in Wuhan, China

  • C. Li
  • Q. Huang
  • R. Yang
  • Y. Dai
  • Y. Zeng
  • L. Tao
  • X. Li
  • J. Zeng
  • Q. WangEmail author
Original Article

Abstract

Summary

We explored the association between gut microbiota composition and bone mineral loss in Chinese elderly people by high-throughput 16S ribosomal RNA (rRNA) gene sequencing. Compared with controls, a smaller number of operational taxonomic units (OTUs), several taxa with altered abundance, and specific functional pathways were found in individuals with low-bone mineral density (BMD).

Introduction

Gut microbiota plays important roles in human health and associates with a number of diseases. However, few studies explored its association with bone mineral loss in human.

Methods

We collected 102 fecal samples from each eligible individual belonging to low-BMD and control groups for high-throughput 16S rRNA gene sequencing.

Results

The low-BMD individuals had a smaller number of OTUs and bacterial taxa at each level. At the phylum level, Bacteroidetes were more abundant in the low-BMD group; Firmicutes were enriched in the control group; Firmicutes and Actinobacteria positively correlated and Bacteroidetes negatively correlated with the BMD and T-score in all subjects. At the family level, the abundance of Lachnospiraceae in low-BMD individuals reduced and positively correlated with BMD and T-score; meanwhile, BMD increased with increasing Bifidobacteriaceae. At the genus level, low-BMD individuals had decreased proportions of Roseburia compared with control ones (P < 0.05). Roseburia, Bifidobacterium, and Lactobacillus positively correlated with BMD and T-score. Furthermore, BMD increased with rising abundance of Bifidobacterium. Functional prediction revealed that 93 metabolic pathways significantly differed between the two groups (FDR-corrected P < 0.05). Most pathways, especially pathways related to LPS biosynthesis, were more abundant in low-BMD individuals than in control ones.

Conclusions

Several taxa with altered abundance and specific functional pathways were discovered in low-BMD individuals. Our findings provide novel epidemiologic evidence to elucidate the underlying microbiota-relevant mechanism in bone mineral loss and osteoporosis.

Keywords

Bone mineral loss Gut microbiota Osteoporosis 16S Ribosomal RNA Sequencing 

Notes

Funding information

The work was funded by the National Natural Science Foundation of China [Grant no. 81573235].

Compliance with ethical standards

Conflicts of interest

None.

Supplementary material

198_2019_4855_MOESM1_ESM.pdf (93 kb)
ESM 1 (PDF 92 kb)
198_2019_4855_MOESM2_ESM.pdf (770 kb)
ESM 2 (PDF 770 kb)
198_2019_4855_MOESM3_ESM.pdf (25 kb)
ESM 3 (PDF 24 kb)

References

  1. 1.
    Park JS, Choi SB, Rhee Y, Chung JW, Choi EY, Kim DW (2015) Parathyroid hormone, calcium, and sodium bridging between osteoporosis and hypertension in postmenopausal Korean women. Calcified Tissue Int 96:417–429CrossRefGoogle Scholar
  2. 2.
    Gass M, Dawson-Hughes B (2006) Preventing osteoporosis-related fractures: an overview. Am J Med 119:S3–s11CrossRefGoogle Scholar
  3. 3.
    Ilic K, Obradovic N, Vujasinovic-Stupar N (2013) The relationship among hypertension, antihypertensive medications, and osteoporosis: a narrative review. Calcified Tissue Int 92:217–227CrossRefGoogle Scholar
  4. 4.
    Chung HJ, Cho L, Shin JS, Lee J, Ha IH, Park HJ, Lee SK (2014) Effects of JSOG-6 on protection against bone loss in ovariectomized mice through regulation of osteoblast differentiation and osteoclast formation. BMC Complem Altern M 14:184CrossRefGoogle Scholar
  5. 5.
    Harada S, Rodan GA (2003) Control of osteoblast function and regulation of bone mass. Nature 423:349–355CrossRefGoogle Scholar
  6. 6.
    Nieves JW, Barrett-Connor E, Siris ES, Zion M, Barlas S, Chen YT (2008) Calcium and vitamin D intake influence bone mass, but not short-term fracture risk, in Caucasian postmenopausal women from the National Osteoporosis Risk Assessment (NORA) study. Osteoporos Int 19:673–679CrossRefGoogle Scholar
  7. 7.
    Warensjo E, Byberg L, Melhus H, Gedeborg R, Mallmin H, Wolk A, Michaelsson K (2011) Dietary calcium intake and risk of fracture and osteoporosis: prospective longitudinal cohort study. Bmj 342:d1473CrossRefGoogle Scholar
  8. 8.
    Pollitzer WS, Anderson JJ (1989) Ethnic and genetic differences in bone mass: a review with a hereditary vs environmental perspective. Am J Clin Nutr 50:1244–1259CrossRefGoogle Scholar
  9. 9.
    Boudin E, Fijalkowski I, Hendrickx G, Van Hul W (2016) Genetic control of bone mass. Mol Cell Endocrinol 432:3–13CrossRefGoogle Scholar
  10. 10.
    Sjogren K, Engdahl C, Henning P, Lerner UH, Tremaroli V, Lagerquist MK, Backhed F, Ohlsson C (2012) The gut microbiota regulates bone mass in mice. J Bone Miner Res 27:1357–1367CrossRefGoogle Scholar
  11. 11.
    Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651CrossRefGoogle Scholar
  12. 12.
    Weaver CM (2015) Diet, gut microbiome, and bone health. Curr Osteoporos Rep 13:125–130CrossRefGoogle Scholar
  13. 13.
    Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI (2007) The human microbiome project. Nature 449:804–810CrossRefGoogle Scholar
  14. 14.
    Nagpal R, Yadav H, Marotta F (2014) Gut microbiota: the next-gen frontier in preventive and therapeutic medicine? Front Med 1:15CrossRefGoogle Scholar
  15. 15.
    Hernandez CJ, Guss JD, Luna M, Goldring SR (2016) Links between the microbiome and bone. J Bone Miner Res 31:1638–1646CrossRefGoogle Scholar
  16. 16.
    Yan J, Herzog JW, Tsang K, Brennan CA, Bower MA, Garrett WS, Sartor BR, Aliprantis AO, Charles JF (2016) Gut microbiota induce IGF-1 and promote bone formation and growth. P Natl Acad Sci USA 113:E7554–E7563CrossRefGoogle Scholar
  17. 17.
    McCabe L, Britton RA, Parameswaran N (2015) Prebiotic and probiotic regulation of bone health: role of the intestine and its microbiome. Curr Osteoporos Rep 13:363–371CrossRefGoogle Scholar
  18. 18.
    Wang J, Wang Y, Gao W, Wang B, Zhao H, Zeng Y, Ji Y, Hao D (2017) Diversity analysis of gut microbiota in osteoporosis and osteopenia patients. PeerJ 5:e3450CrossRefGoogle Scholar
  19. 19.
    Expert Panel on Musculoskeletal I, Ward RJ, Roberts CC et al (2017) ACR Appropriateness Criteria® osteoporosis and bone mineral density. J Am Coll Radiol 14:S189–S202CrossRefGoogle Scholar
  20. 20.
    Qian J, Cai M, Gao J, Tang S, Xu L, Critchley JA (2010) Trends in smoking and quitting in China from 1993 to 2003: National Health Service Survey data. B World Health Organ 88:769–776CrossRefGoogle Scholar
  21. 21.
    Fugmann M, Breier M, Rottenkolber M, Banning F, Ferrari U, Sacco V, Grallert H, Parhofer KG, Seissler J, Clavel T, Lechner A (2015) The stool microbiota of insulin resistant women with recent gestational diabetes, a high risk group for type 2 diabetes. Sci Rep 5:13212CrossRefGoogle Scholar
  22. 22.
    Mejia-Leon ME, Petrosino JF, Ajami NJ, Dominguez-Bello MG, de la Barca AM (2014) Fecal microbiota imbalance in Mexican children with type 1 diabetes. Sci Rep 4:3814CrossRefGoogle Scholar
  23. 23.
    de Vlaming R, Groenen PJ (2015) The current and future use of ridge regression for prediction in quantitative genetics. Biomed Res Int 2015:143712CrossRefGoogle Scholar
  24. 24.
    Cule E, De Iorio M (2013) Ridge regression in prediction problems: automatic choice of the ridge parameter. Genet Epidemiol 37:704–714CrossRefGoogle Scholar
  25. 25.
    Sharon G, Garg N, Debelius J, Knight R, Dorrestein PC, Mazmanian SK (2014) Specialized metabolites from the microbiome in health and disease. Cell Metab 20:719–730CrossRefGoogle Scholar
  26. 26.
    Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM, Glickman JN, Garrett WS (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:569–573CrossRefGoogle Scholar
  27. 27.
    Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, Liu H, Cross JR, Pfeffer K, Coffer PJ, Rudensky AY (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504:451–455CrossRefGoogle Scholar
  28. 28.
    Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyauchi E, Hino S, Atarashi K, Onawa S, Fujimura Y, Lockett T, Clarke JM, Topping DL, Tomita M, Hori S, Ohara O, Morita T, Koseki H, Kikuchi J, Honda K, Hase K, Ohno H (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504:446–450CrossRefGoogle Scholar
  29. 29.
    Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H, Thangaraju M, Prasad PD, Manicassamy S, Munn DH, Lee JR, Offermanns S, Ganapathy V (2014) Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40:128–139CrossRefGoogle Scholar
  30. 30.
    Aurigemma NC, Koltun KJ, VanEvery H, Rogers CJ, De Souza MJ (2018) Linking the gut microbiota to bone health in anorexia nervosa. Curr Osteoporos Rep 16:65–75CrossRefGoogle Scholar
  31. 31.
    Li JY, Chassaing B, Tyagi AM, Vaccaro C, Luo T, Adams J, Darby TM, Weitzmann MN, Mulle JG, Gewirtz AT, Jones RM, Pacifici R (2016) Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. J Clin Invest 126:2049–2063CrossRefGoogle Scholar
  32. 32.
    Ohlsson C, Engdahl C, Fak F, Andersson A, Windahl SH, Farman HH, Moverare-Skrtic S, Islander U, Sjogren K (2014) Probiotics protect mice from ovariectomy-induced cortical bone loss. PLoS One 9:e92368CrossRefGoogle Scholar
  33. 33.
    Britton RA, Irwin R, Quach D, Schaefer L, Zhang J, Lee T, Parameswaran N, McCabe LR (2014) Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model. J Cell Physiol 229:1822–1830CrossRefGoogle Scholar
  34. 34.
    Tilg H, Moschen AR, Kaser A, Pines A, Dotan I (2008) Gut, inflammation and osteoporosis: basic and clinical concepts. Gut 57:684–694CrossRefGoogle Scholar
  35. 35.
    Harris L, Senagore P, Young VB, McCabe LR (2009) Inflammatory bowel disease causes reversible suppression of osteoblast and chondrocyte function in mice. Am J Physiol- Gastr L 296:G1020–G1029CrossRefGoogle Scholar
  36. 36.
    McCabe LR, Irwin R, Schaefer L, Britton RA (2013) Probiotic use decreases intestinal inflammation and increases bone density in healthy male but not female mice. J Cell Physiol 228:1793–1798CrossRefGoogle Scholar
  37. 37.
    Kimble RB, Bain S, Pacifici R (1997) The functional block of TNF but not of IL-6 prevents bone loss in ovariectomized mice. J Bone Miner Res 12:935–941CrossRefGoogle Scholar
  38. 38.
    Charatcharoenwitthaya N, Khosla S, Atkinson EJ, McCready LK, Riggs BL (2007) Effect of blockade of TNF-alpha and interleukin-1 action on bone resorption in early postmenopausal women. J Bone Miner Res 22:724–729CrossRefGoogle Scholar
  39. 39.
    Pinzone MR, Celesia BM, Di Rosa M, Cacopardo B, Nunnari G (2012) Microbial translocation in chronic liver diseases. Int J Microbiol 2012:694629CrossRefGoogle Scholar
  40. 40.
    Kohn FR, Kung AH (1995) Role of endotoxin in acute inflammation induced by gram-negative bacteria: specific inhibition of lipopolysaccharide-mediated responses with an amino-terminal fragment of bactericidal/permeability-increasing protein. Infect Immun 63:333–339Google Scholar
  41. 41.
    Cybulsky MI, Chan MK, Movat HZ (1988) Acute inflammation and microthrombosis induced by endotoxin, interleukin-1, and tumor necrosis factor and their implication in gram-negative infection. Lab Investig 58:365–378Google Scholar
  42. 42.
    Schwarzer M, Makki K, Storelli G, Machuca-Gayet I, Srutkova D, Hermanova P, Martino ME, Balmand S, Hudcovic T, Heddi A, Rieusset J, Kozakova H, Vidal H, Leulier F (2016) Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science 351:854–857CrossRefGoogle Scholar
  43. 43.
    von Martels JZH, Sadaghian Sadabad M, Bourgonje AR, Blokzijl T, Dijkstra G, Faber KN, Harmsen HJM (2017) The role of gut microbiota in health and disease: in vitro modeling of host-microbe interactions at the aerobe-anaerobe interphase of the human gut. Anaerobe 44:3–12CrossRefGoogle Scholar
  44. 44.
    Misiorowski W (2017) Osteoporosis in men. Prz Menopauzalny 16:70–73Google Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2019

Authors and Affiliations

  1. 1.MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  2. 2.Department of Rehabilitation Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  3. 3.Department of Health Checkup, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  4. 4.Department of Nuclear Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  5. 5.Wuhan NO.1 HospitalWuhanChina

Personalised recommendations