Associations between radius low-frequency axial ultrasound velocity and bone fragility in elderly men and women

  • E. BiverEmail author
  • J. Pepe
  • A. de Sire
  • T. Chevalley
  • S. Ferrari
Original Article



An exploratory study in elderly women and men from the Geneva Retirees Cohort indicates that low-frequency quantitative ultrasound measurement at the radius captures aBMD, bone size, and cortical tissue mineral density and might be used for screening purposes prior to DXA to evaluate fracture risk.


The contribution of distal radius bone mineral density (BMD) and cortical microstructure to fracture risk has recently been demonstrated. In this exploratory study, we investigated whether low-frequency quantitative ultrasound measurement at the distal radius may capture the peripheral determinants of bone fragility assessed with dual-energy X-ray absorptiometry (DXA) and high-resolution peripheral quantitative computed tomography (HR-pQCT).


Low-frequency velocity (VLF) was measured at the radius using OsCare Sono®, a portable axial transmission ultrasonometer, in 271 community-dwelling postmenopausal women and men (age 71.5 ± 1.4 years) from the Geneva Retirees Cohort. Cortical (Ct) and trabecular (Tb) volumetric (v) BMD and microstructure at the distal radius were assessed by HR-pQCT, in addition to areal (a) BMD by DXA, at the same time point.


VLF was highly correlated with aBMD at the distal third radius (r = 0.72, p < 0.001). For microstructure parameters, the highest correlation was observed with cortical area (r = 0.59, p < 0.001). VLF also captured bone geometry (total area) and cortical tissue mineral density independently of aBMD. In models adjusted for age and sex, VLF was significantly associated with prevalent low-trauma fractures [OR 95%CI for one SD decrease of VLF 1.50 (1.05, 2.14), p = 0.024], with discrimination performance comparable to femoral neck or distal radius aBMD.


Measurement of VLF at the radius captures aBMD, bone size, and cortical tissue mineral density and might be used for screening purposes prior to DXA to evaluate fracture risk.


Bone microstructure Bone mineral density Fracture Osteoporosis Ultrasonic low-frequency velocity 



We are indebted to F. Merminod, A. Sigaud, and M. Hars for the management of participants, C. Genet and G. Conicella to for DXA and HR-pQCT measurements. We thank Dr. R. Zebaze and Pr E. Seeman for cortical porosity quantification with StrAx1.0 software. We thank the Swiss Foundation for Research on Ageing AETAS for the kind supply of its mobile osteodensitometer, the Geneva University Hospitals and Faculty of Medicine Clinical Research Center, the HUG Private Foundation, and Oscare Medical for their support. None of the funders had any influence on the study design, implementation, and analysis, and on interpretation of the data.

Compliance with ethical standards

The study protocol received approval from the Geneva University Hospitals’ Ethics Committee, and all participants provided written informed consent.

Conflicts of interest

Dr. E. Biver and Pr S. Ferrari report a research grant from Oscare Medical for a research project; Dr. Pepe, Dr. de Sire, and Pr Chevalley declare that they have no conflicts of interest.

Supplementary material

198_2018_4725_MOESM1_ESM.docx (201 kb)
ESM 1 (DOCX 200 kb)


  1. 1.
    Seeman E (2002) Pathogenesis of bone fragility in women and men. Lancet 359(9320):1841–1850. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Zebaze RM, Ghasem-Zadeh A, Bohte A, Iuliano-Burns S, Mirams M, Price RI, Mackie EJ, Seeman E (2010) Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet 375(9727):1729–1736. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Boutroy S, Khosla S, Sornay-Rendu E, Zanchetta MB, McMahon DJ, Zhang CA, Chapurlat RD, Zanchetta J, Stein EM, Bogado C, Majumdar S, Burghardt AJ, Shane E (2016) Microarchitecture and peripheral BMD are impaired in postmenopausal white women with fracture independently of Total hip T-score: an international multicenter study. J Bone Miner Res 31(6):1158–1166. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Chevalley T, Bonjour JP, van Rietbergen B, Ferrari S, Rizzoli R (2013) Fracture history of healthy premenopausal women is associated with a reduction of cortical microstructural components at the distal radius. Bone 55(2):377–383. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Szulc P, Boutroy S, Vilayphiou N, Chaitou A, Delmas PD, Chapurlat R (2011) Cross-sectional analysis of the association between fragility fractures and bone microarchitecture in older men: the STRAMBO study. J Bone Miner Res 26(6):1358–1367. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Biver E, Durosier-Izart C, Chevalley T, van Rietbergen B, Rizzoli R, Ferrari S (2018) Evaluation of radius microstructure and areal bone mineral density improves fracture prediction in postmenopausal women. J Bone Miner Res 33(2):328–337. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Dennison EM, Jameson KA, Edwards MH, Denison HJ, Aihie Sayer A, Cooper C (2014) Peripheral quantitative computed tomography measures are associated with adult fracture risk: the Hertfordshire Cohort Study. Bone 64:13–17. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ohlsson C, Sundh D, Wallerek A, Nilsson M, Karlsson M, Johansson H, Mellstrom D, Lorentzon M (2017) Cortical bone area predicts incident fractures independently of areal bone mineral density in older men. J Clin Endocrinol Metab 102(2):516–524. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    World Health Organization (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. WHO technical report series. Geneva: WHO, 1994Google Scholar
  10. 10.
    Sornay-Rendu E, Boutroy S, Duboeuf F, Chapurlat RD (2017) Bone microarchitecture assessed by HR-pQCT as predictor of fracture risk in postmenopausal women: the OFELY Study. J Bone Miner Res 32(6):1243–1251. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bynum JPW, Bell JE, Cantu RV, Wang Q, McDonough CM, Carmichael D, Tosteson TD, Tosteson ANA (2016) Second fractures among older adults in the year following hip, shoulder, or wrist fracture. Osteoporos Int 27(7):2207–2215. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bossy E, Talmant M, Peyrin F, Akrout L, Cloetens P, Laugier P (2004) An in vitro study of the ultrasonic axial transmission technique at the radius: 1-MHz velocity measurements are sensitive to both mineralization and intracortical porosity. J Bone Miner Res 19(9):1548–1556. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Grimal Q, Grondin J, Guerard S, Barkmann R, Engelke K, Gluer CC, Laugier P (2013) Quantitative ultrasound of cortical bone in the femoral neck predicts femur strength: results of a pilot study. J Bone Miner Res 28(2):302–312. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Moayyeri A, Adams JE, Adler RA, Krieg MA, Hans D, Compston J, Lewiecki EM (2012) Quantitative ultrasound of the heel and fracture risk assessment: an updated meta-analysis. Osteoporos Int 23(1):143–153. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Moilanen P, Nicholson PH, Karkkainen T, Wang Q, Timonen J, Cheng S (2003) Assessment of the tibia using ultrasonic guided waves in pubertal girls. Osteoporos Int 14(12):1020–1027. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Raum K, Cleveland RO, Peyrin F, Laugier P (2006) Derivation of elastic stiffness from site-matched mineral density and acoustic impedance maps. Phys Med Biol 51(3):747–758. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Raum K, Leguerney I, Chandelier F, Bossy E, Talmant M, Saied A, Peyrin F, Laugier P (2005) Bone microstructure and elastic tissue properties are reflected in QUS axial transmission measurements. Ultrasound Med Biol 31(9):1225–1235. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kilappa V, Moilanen P, Xu L, Nicholson PH, Timonen J, Cheng S (2011) Low-frequency axial ultrasound velocity correlates with bone mineral density and cortical thickness in the radius and tibia in pre- and postmenopausal women. Osteoporos Int 22(4):1103–1113. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Moilanen P, Kilappa V, Nicholson PH, Timonen J, Cheng S (2004) Thickness sensitivity of ultrasound velocity in long bone phantoms. Ultrasound Med Biol 30(11):1517–1521. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Muller M, Mitton D, Moilanen P, Bousson V, Talmant M, Laugier P (2008) Prediction of bone mechanical properties using QUS and pQCT: study of the human distal radius. Med Eng Phys 30(6):761–767. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Moilanen P, Maatta M, Kilappa V, Xu L, Nicholson PH, Alen M, Timonen J, Jamsa T, Cheng S (2013) Discrimination of fractures by low-frequency axial transmission ultrasound in postmenopausal females. Osteoporos Int 24(2):723–730. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Maatta M, Moilanen P, Timonen J, Pulkkinen P, Korpelainen R, Jamsa T (2014) Association between low-frequency ultrasound and hip fractures -- comparison with DXA-based BMD. BMC Musculoskelet Disord 15:208. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Maatta M, Moilanen P, Nicholson P, Cheng S, Timonen J, Jamsa T (2009) Correlation of tibial low-frequency ultrasound velocity with femoral radiographic measurements and BMD in elderly women. Ultrasound Med Biol 35(6):903–911. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Biver E, Perreard Lopreno G, Hars M, van Rietbergen B, Vallee JP, Ferrari S, Besse M, Rizzoli R (2016) Occupation-dependent loading increases bone strength in men. Osteoporos Int 27(3):1169–1179. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Biver E, Durosier C, Chevalley T, Herrmann FR, Ferrari S, Rizzoli R (2015) Prior ankle fractures in postmenopausal women are associated with low areal bone mineral density and bone microstructure alterations. Osteoporos Int 26(8):2147–2155. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Burghardt AJ, Buie HR, Laib A, Majumdar S, Boyd SK (2010) Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT. Bone 47(3):519–528. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Zebaze R, Ghasem-Zadeh A, Mbala A, Seeman E (2013) A new method of segmentation of compact-appearing, transitional and trabecular compartments and quantification of cortical porosity from high resolution peripheral quantitative computed tomographic images. Bone 54(1):8–20. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Karjalainen JP, Riekkinen O, Kroger H (2018) Pulse-echo ultrasound method for detection of post-menopausal women with osteoporotic BMD. Osteoporos Int 29(5):1193–1199. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Granke M, Grimal Q, Saied A, Nauleau P, Peyrin F, Laugier P (2011) Change in porosity is the major determinant of the variation of cortical bone elasticity at the millimeter scale in aged women. Bone 49(5):1020–1026. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Peacock M, Buckwalter KA, Persohn S, Hangartner TN, Econs MJ, Hui S (2009) Race and sex differences in bone mineral density and geometry at the femur. Bone 45(2):218–225. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    McCloskey EV, Kanis JA, Oden A, Harvey NC, Bauer D, Gonzalez-Macias J, Hans D, Kaptoge S, Krieg MA, Kwok T, Marin F, Moayyeri A, Orwoll E, Glusmall io RC, Johansson H (2015) Predictive ability of heel quantitative ultrasound for incident fractures: an individual-level meta-analysis. Osteoporos Int 26(7):1979–1987. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gonnelli S, Cepollaro C, Gennari L, Montagnani A, Caffarelli C, Merlotti D, Rossi S, Cadirni A, Nuti R (2005) Quantitative ultrasound and dual-energy X-ray absorptiometry in the prediction of fragility fracture in men. Osteoporos Int 16(8):963–968. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hans D, Baim S (2017) Quantitative ultrasound (QUS) in the management of osteoporosis and assessment of fracture risk. J Clin Densitom 20(3):322–333. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Prevrhal S, Fuerst T, Fan B, Njeh C, Hans D, Uffmann M, Srivastav S, Genant HK (2001) Quantitative ultrasound of the tibia depends on both cortical density and thickness. Osteoporos Int 12(1):28–34. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2018

Authors and Affiliations

  1. 1.Division of Bone Diseases, Geneva University Hospitals and Faculty of MedicineUniversity of GenevaGenevaSwitzerland
  2. 2.Department of Internal Medicine and Medical Disciplines“Sapienza” University of RomeRomeItaly
  3. 3.Department of Medical and Surgical Specialties and DentistryUniversity of Campania “Luigi Vanvitelli”NaplesItaly

Personalised recommendations