Prediction of incident vertebral fracture using CT-based finite element analysis

  • B. T. Allaire
  • D. Lu
  • F. Johannesdottir
  • D. Kopperdahl
  • T. M. Keaveny
  • M. Jarraya
  • A. Guermazi
  • M. A. Bredella
  • E. J. Samelson
  • D. P. Kiel
  • D. E. Anderson
  • S. Demissie
  • M. L. BouxseinEmail author
Original Article



Prior studies show vertebral strength from computed tomography-based finite element analysis may be associated with vertebral fracture risk. We found vertebral strength had a strong association with new vertebral fractures, suggesting that vertebral strength measures identify those at risk for vertebral fracture and may be a useful clinical tool.


We aimed to determine the association between vertebral strength by quantitative computed tomography (CT)-based finite element analysis (FEA) and incident vertebral fracture (VF). In addition, we examined sensitivity and specificity of previously proposed diagnostic thresholds for fragile bone strength and low BMD in predicting VF.


In a case-control study, 26 incident VF cases (13 men, 13 women) and 62 age- and sex-matched controls aged 50 to 85 years were selected from the Framingham multi-detector computed tomography cohort. Vertebral compressive strength, integral vBMD, trabecular vBMD, CT-based BMC, and CT-based aBMD were measured from CT scans of the lumbar spine.


Lower vertebral strength at baseline was associated with an increased risk of new or worsening VF after adjusting for age, BMI, and prevalent VF status (odds ratio (OR) = 5.2 per 1 SD decrease, 95% CI 1.3–19.8). Area under receiver operating characteristic (ROC) curve comparisons revealed that vertebral strength better predicted incident VF than CT-based aBMD (AUC = 0.804 vs. 0.715, p = 0.05) but was not better than integral vBMD (AUC = 0.815) or CT-based BMC (AUC = 0.794). Additionally, proposed fragile bone strength thresholds trended toward better sensitivity for identifying VF than that of aBMD-classified osteoporosis (0.46 vs. 0.23, p = 0.09).


This study shows an association between vertebral strength measures and incident vertebral fracture in men and women. Though limited by a small sample size, our findings also suggest that bone strength estimates by CT-based FEA provide equivalent or better ability to predict incident vertebral fracture compared to CT-based aBMD. Our study confirms that CT-based estimates of vertebral strength from FEA are useful for identifying patients who are at high risk for vertebral fracture.


Bone strength Finite element analysis Fracture prediction Incident vertebral fracture 



The contents are solely the responsibility of the authors and do not necessarily represent the views of the NIH. We acknowledge Dr. Harry K. Genant’s contribution in reviewing vertebral fracture assessment.

Funding information

This work was supported by grants from the National Institutes of Health (R01 AR053986, R00 AG042458, R01 AG041658, R01 AR041398), and by the National Heart, Lung, and Blood Institute (NHLBI) Framingham Heart Study (NIH/NHLBI Contract N01-HC-25195).

Compliance with ethical standards

Conflicts of interest

Brett T. Allaire, Darlene Lu, Fjola Johannesdottir, Mohamed Jarraya, Ali Guermazi, Miriam A. Bredella, Elizabeth J. Samelson, Douglas P. Kiel, Dennis E.Anderson, Serkalem Demissie, and Mary L. Bouxsein declare that they have no conflicts of interest. Dr. Keaveny has been a consultant for Amgen, AgNovos Healthcare, and O.N. Diagnostics and has equity in O.N. Diagnostics. Drs. Keaveny and Kopperdahl have financial interests in O.N. Diagnostics and both they and the company may benefit from the results of this work.

Supplementary material

198_2018_4716_MOESM1_ESM.docx (16 kb)
ESM 1 (DOCX 15 kb)


  1. 1.
    Melton LJ, Lane AW, Cooper C et al (1993) Prevalence and incidence of vertebral deformities. Osteoporos Int 3:113–119. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Schuit SCE, Van Der Klift M, Weel AEAM et al (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam study. Bone 34:195–202. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Cosman F, Krege JH, Looker AC, Schousboe JT, Fan B, Sarafrazi Isfahani N, Shepherd JA, Krohn KD, Steiger P, Wilson KE, Genant HK (2017) Spine fracture prevalence in a nationally representative sample of US women and men aged ≥40 years: results from the National Health and Nutrition Examination Survey (NHANES) 2013-2014. Osteoporos Int 28:1857–1866. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Schneider EL, Guralnik JM (1990) The aging of America. JAMA 263:2335–2340. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gillespie CW, Morin PE (2017) Trends and disparities in osteoporosis screening among women in the United States, 2008-2014. Am J Med 130:306–316. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Binkley N, Blank RD, Leslie WD, Lewiecki EM, Eisman JA, Bilezikian JP (2017) Osteoporosis in crisis: it’s time to focus on fracture. J Bone Miner Res 32:1391–1394. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Orwoll ES, Marshall LM, Nielson CM, Cummings SR, Lapidus J, Cauley JA, Ensrud K, Lane N, Hoffmann PR, Kopperdahl DL, Keaveny TM, for the Osteoporotic Fractures in Men (MrOS) Study Group (2009) Finite element analysis of the proximal femur and hip fracture risk in older men. J Bone Miner Res 2424:475–483. CrossRefGoogle Scholar
  8. 8.
    Ward J, Wood C, Rouch K, Pienkowski D, Malluche HH (2016) Stiffness and strength of bone in osteoporotic patients treated with varying durations of oral bisphosphonates. Osteoporos Int 27:2681–2688. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Crawford RP, Cann CE, Keaveny TM (2003) Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 33:744–750. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Imai K, Ohnishi I, Bessho M, Nakamura K (2006) Nonlinear finite element model predicts vertebral bone strength and fracture site. Spine (Phila Pa 1976) 31:1789–1794. CrossRefGoogle Scholar
  11. 11.
    Zysset PK, Dall’Ara E, Varga P, Pahr DH (2013) Finite element analysis for prediction of bone strength. Bonekey Rep 2:1–9. CrossRefGoogle Scholar
  12. 12.
    Wang X, Sanyal A, Cawthon PM, Palermo L, Jekir M, Christensen J, Ensrud KE, Cummings SR, Orwoll E, Black DM, for the Osteoporotic Fractures in Men (MrOS) Research Group, Keaveny TM (2012) Prediction of new clinical vertebral fractures in elderly men using finite element analysis of CT scans. J Bone Miner Res 27:808–816. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Graeff C, Marin F, Petto H, Kayser O, Reisinger A, Peña J, Zysset P, Glüer CC (2013) High resolution quantitative computed tomography-based assessment of trabecular microstructure and strength estimates by finite-element analysis of the spine, but not DXA, reflects vertebral fracture status in men with glucocorticoid-induced osteoporosis. Bone 52:568–577. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Melton LJ, Riggs BL, Keaveny TM et al (2010) Relation of vertebral deformities to bone density, structure, and strength. J Bone Miner Res 25:1922–1930. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Imai K, Ohnishi I, Matsumoto T, Yamamoto S, Nakamura K (2009) Assessment of vertebral fracture risk and therapeutic effects of alendronate in postmenopausal women using a quantitative computed tomography-based nonlinear finite element method. Osteoporos Int 20:801–810. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Melton LJ, Riggs BL, Keaveny TM et al (2007) Structural determinants of vertebral fracture risk. J Bone Miner Res 22:1885–1892. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kopperdahl DL, Aspelund T, Hoffmann PF, Sigurdsson S, Siggeirsdottir K, Harris TB, Gudnason V, Keaveny TM (2014) Assessment of incident spine and hip fractures in women and men using finite element analysis of CT scans. J Bone Miner Res 29:570–580. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hoffmann U, Massaro JM, Fox CS, Manders E, O'Donnell CJ (2008) Defining normal distributions of coronary artery calcium in women and men from the Framingham heart study. Am J Cardiol 102:1136–1141. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Feinleib M, Kannel WB, Garrison RJ et al (1975) The Framingham offspring study. Design and preliminary data. Prev Med (Baltim) 4:518–525. CrossRefGoogle Scholar
  20. 20.
    Splansky GL, Corey D, Yang Q, Atwood LD, Cupples LA, Benjamin EJ, D'Agostino RB, Fox CS, Larson MG, Murabito JM, O'Donnell CJ, Vasan RS, Wolf PA, Levy D (2007) The third generation cohort of the National Heart, Lung, and Blood Institute’s Framingham heart study: design, recruitment, and initial examination. Am J Epidemiol 165:1328–1335. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Dawber TR, Meadors GF, Moore FE (1951) Epidemiological approaches to heart disease: the Framingham study. Am J Public Health 41:279–281. CrossRefGoogle Scholar
  22. 22.
    Chan JJ, Cupples LA, Kiel DP, O'Donnell CJ, Hoffmann U, Samelson EJ (2015) QCT volumetric bone mineral density and vascular and valvular calcification: the Framingham study. J Bone Miner Res 30:1767–1774. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Yau MS, Demissie S, Zhou Y, Anderson DE, Lorbergs AL, Kiel DP, Allaire BT, Yang L, Cupples LA, Travison TG, Bouxsein ML, Karasik D, Samelson EJ (2016) Heritability of thoracic spine curvature and genetic correlations with other spine traits: the Framingham study. J Bone Miner Res 31:2077–2084. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Keaveny TM, Donley DW, Hoffmann PF, Mitlak BH, Glass EV, San Martin JA (2007) Effects of teriparatide and alendronate on vertebral strength as assessed by finite element modeling of QCT scans in women with osteoporosis. J Bone Miner Res 22:149–157. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Morgan EF, Keaveny TM (2001) Dependence of yield strain of human trabecular bone on anatomic site. J Biomech 34:569–577. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Morgan EF, Bayraktar HH, Keaveny TM (2003) Trabecular bone modulus-density relationships depend on anatomic site. J Biomech 36:897–904. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kopperdahl DL, Morgan EF, Keaveny TM (2002) Quantitative computed tomography estimates of the mechanical properties of human vertebral trabecular bone. J Orthop Res 20:801–805CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Engelke K, Adams JE, Armbrecht G, Augat P, Bogado CE, Bouxsein ML, Felsenberg D, Ito M, Prevrhal S, Hans DB, Lewiecki EM (2008) Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD official positions. J Clin Densitom 11:123–162. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Schousboe JT, Shepherd JA, Bilezikian JP, Baim S (2013) Executive summary of the 2013 International Society for Clinical Densitometry Position Development Conference on bone densitometry. J Clin Densitom 16:455–466. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kanis JA, McCloskey EV, Johansson H, Oden A, Melton LJ III, Khaltaev N (2008) A reference standard for the description of osteoporosis. Bone 42:467–475CrossRefPubMedCentralGoogle Scholar
  32. 32.
    Altman DG, Bland JM (1994) Diagnostic tests. 1: sensitivity and specificity. BMJ 308:1552. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Keyak JH, Rossi SA, Jones KA, Skinner HB (1997) Prediction of femoral fracture load using automated finite element modelling. J Biomech 31:125–133. CrossRefGoogle Scholar
  34. 34.
    van Rietbergen B, Weinans H, Huiskes R, Odgaard A (1995) A new method to determine trabecular bone elastic properties and loading using micromechanical finite-elements models. J Biomech 28:69–81CrossRefPubMedCentralGoogle Scholar
  35. 35.
    Keyak JH, Sigurdsson S, Karlsdottir G, Oskarsdottir D, Sigmarsdottir A, Zhao S, Kornak J, Harris TB, Sigurdsson G, Jonsson BY, Siggeirsdottir K, Eiriksdottir G, Gudnason V, Lang TF (2011) Male-female differences in the association between incident hip fracture and proximal femur strength: a finite element analysis study. Bone 48:1239–1245. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lindsay R, Silverman SL, Cooper C, Hanley DA, Barton I, Broy SB, Licata A, Benhamou L, Geusens P, Flowers K, Stracke H, Seeman E (2001) Risk of new vertebral fracture in the year following a fracture. JAMA 285:320–323. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Weber NK, Fidler JL, Keaveny TM, Clarke BL, Khosla S, Fletcher JG, Lee DC, Pardi DS, Loftus EV, Kane SV, Barlow JM, Murthy NS, Becker BD, Bruining DH (2014) Validation of a CT-derived method for osteoporosis screening in IBD patients undergoing contrast-enhanced CT enterography. Am J Gastroenterol 109:401–408. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Fidler JL, Murthy NS, Khosla S, Clarke BL, Bruining DH, Kopperdahl DL, Lee DC, Keaveny TM (2016) Comprehensive assessment of osteoporosis and bone fragility with CT colonography. Radiology 278:172–180. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lee DC, Hoffmann PF, Kopperdahl DL, Keaveny TM (2017) Phantomless calibration of CT scans for measurement of BMD and bone strength—inter-operator reanalysis precision. Bone 103:325–333. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Adams A, Fischer H, Kopperdahl D et al (2017) The fracture, osteoporosis, and CT utilization study (FOCUS)—utilizing pre-existing CT to assess risk of hip fracture in a large real-world clinical setting. J Bone Miner Res 32(Suppl):1Google Scholar
  41. 41.
    Agten CA, Ramme AJ, Kang S, Honig S, Chang G (2017) Cost-effectiveness of virtual bone strength testing in osteoporosis screening programs for postmenopausal women in the United States. Radiology 161259:506–517. CrossRefGoogle Scholar
  42. 42.
    Anderson DE, Demissie S, Allaire BT, Bruno AG, Kopperdahl DL, Keaveny TM, Kiel DP, Bouxsein ML (2014) The associations between QCT-based vertebral bone measurements and prevalent vertebral fractures depend on the spinal locations of both bone measurement and fracture. Osteoporos Int 25:559–566. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2018

Authors and Affiliations

  • B. T. Allaire
    • 1
  • D. Lu
    • 2
  • F. Johannesdottir
    • 1
    • 3
  • D. Kopperdahl
    • 4
  • T. M. Keaveny
    • 5
    • 6
  • M. Jarraya
    • 7
    • 8
  • A. Guermazi
    • 8
  • M. A. Bredella
    • 9
  • E. J. Samelson
    • 10
    • 11
  • D. P. Kiel
    • 10
    • 11
  • D. E. Anderson
    • 1
    • 3
  • S. Demissie
    • 2
  • M. L. Bouxsein
    • 1
    • 3
    Email author
  1. 1.Center for Advanced Orthopaedic StudiesBeth Israel Deaconess Medical CenterBostonUSA
  2. 2.Boston UniversityBostonUSA
  3. 3.Department of Orthopedic SurgeryHarvard Medical SchoolBostonUSA
  4. 4.O.N. Diagnostics LLCBerkeleyUSA
  5. 5.Department of Mechanical EngineeringUniversity of CaliforniaBerkeleyUSA
  6. 6.Department of BioengineeringUniversity of CaliforniaBerkeleyUSA
  7. 7.Department of RadiologyMercy Catholic Medical CenterDarbyUSA
  8. 8.Boston University School of MedicineBostonUSA
  9. 9.Department of RadiologyMassachusetts General HospitalBostonUSA
  10. 10.Institute for Aging ResearchHebrew SeniorLifeBostonUSA
  11. 11.Department of MedicineBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonUSA

Personalised recommendations