Advertisement

Osteoporosis International

, Volume 30, Issue 2, pp 491–505 | Cite as

Rehmanniae Radix Preparata suppresses bone loss and increases bone strength through interfering with canonical Wnt/β-catenin signaling pathway in OVX rats

  • C. Liu
  • L. Wang
  • R. Zhu
  • H. Liu
  • R. Ma
  • B. Chen
  • L. Li
  • Y. Guo
  • Q. Jia
  • S. Shi
  • D. Zhao
  • F. Mo
  • B. Zhao
  • J. Niu
  • M. Fu
  • A.N. Orekhov
  • D. Brömme
  • S. Gao
  • D. ZhangEmail author
Original Article

Abstract

Summary

Rehmanniae Radix Preparata (RRP) improves bone quality in OVX rats through the regulation of bone homeostasis via increasing osteoblastogenesis and decreasing osteoclastogenesis, suggesting it has a potential for the development of new anti-osteoporotic drugs.

Introduction

Determine the anti-osteoporotic effect of RRP in ovariectomized (OVX) rats and identify the signaling pathway involved in this process.

Methods

OVX rats were treated with RRP aqueous extract for 14 weeks. The serum levels of tartrate-resistant acid phosphatase (TRAP), receptor activator of nuclear factor kappa-Β ligand (RANKL), alkaline phosphatase (ALP), and osteoprotegerin (OPG) were determined by ELISA. Bone histopathological alterations were evaluated by H&E, Alizarin red S, and Safranin O staining. Bone mineral density (BMD) and bone microstructure in rat femurs and lumbar bones were determined by dual-energy X-ray absorptiometry and micro-computed tomography. Femoral bone strength was detected by a three-point bending assay. The expression of Phospho-glycogen synthase kinase 3 beta (p-GSK-3β), GSK-3β, Dickkopf-related protein 1 (DKK1), cathepsin K, OPG, RANKL, IGF-1, Runx2, β-catenin, and p-β-catenin was determined by western blot and/or immunohistochemical staining.

Results

Treatment of OVX rats with RRP aqueous extract rebuilt bone homeostasis demonstrated by increasing the levels of OPG as well as decreasing the levels of TRAP, RANKL, and ALP in serum. Furthermore, RRP treatment preserved BMD and mechanical strength by increasing cortical bone thickness and epiphyseal thickness as well as improving trabecular distribution in the femurs of OVX rats. In addition, RRP downregulated the expression of DKK1, sclerostin, RANKL, cathepsin K, and the ratio of p-β-catenin to β-catenin, along with upregulating the expression of IGF-1, β-catenin, and Runx2 and the ratio of p-GSK-3β to GSK-3β in the tibias and femurs of OVX rats. Echinacoside, jionoside A1/A2, acetoside, isoacetoside, jionoside B1, and jionoside B2 were identified in the RRP aqueous extract.

Conclusion

RRP attenuates bone loss and improves bone quality in OVX rats partly through its regulation of the canonical Wnt/β-catenin signaling pathway, suggesting that RRP has the potential to provide a new source of anti-osteoporotic drugs.

Keywords

Bone quality Cathepsin K OPG/RANKL Ovariectomized (OVX) rats Rehmanniae Radix Preparata (RRP) Wnt/β-catenin 

Abbreviations

ALP

Alkaline phosphatase

ANOVA

One-way analysis of variance

BMD

Bone mineral density

CT

Computed micro-tomography

DKK1

Dickkopf-related protein 1

ELISA

Enzyme-linked immunosorbent assay

EV

Estradiol valerate

GAGs

Glycosaminoglycans

GSK-3β

Glycogen synthase kinase 3 beta

H&E

Hematoxylin/eosin

IGF-1

Insulin-like growth factor 1

IOD

Integrated optical density

OPG

Osteoprotegerin

OVX

Ovariectomized

p-GSK-3β

Phospho-glycogen synthase kinase 3 beta

RANK

Receptor activator of nuclear factor kappa-Β

RANKL

Receptor activator of nuclear factor kappa-Β ligand

RRP

Rehmanniae Radix Preparata

Runx2

Runt-related transcription factor 2

TCM

Traditional Chinese medicine

TRAP

Tartrate-resistant acid phosphatase

Notes

Acknowledgments

The authors deeply thank Dr. Dahong Ju at the China Academy Sciences of Traditional Chinese Medicine for his great contribution to the current study. We also thank Angela Tether for the thorough English editing of the manuscript.

Compliance with ethical standards

The protocol of the study was approved by the Ethics Committee of Beijing University of Chinese Medicine (BUCM).

Conflicts of interest

Dr. Dongwei Zhang received grants to conduct this study from the Beijing Municipal Natural Science Foundation (7172126) and the National Natural Science Foundation of China (NSFC81273995). Dr. Sihua Gao received grants from the National Natural Science Foundation of China (NSFC81274041) and the key drug development program of MOST (20122X09103201-005). Dr. Jianzhao Niu received a grant from the 111 project of MOE (B07007). Dr. Dieter Brӧmme received a grant from the Canadian Institute of Health Research (CIHR-MOP). All authors declare that the results presented in this manuscript are the true expression of findings, and there has been no interference in respondents’ free communication and dissemination.

Supplementary material

198_2018_4670_Fig7_ESM.png (215 kb)
Figure S1.

The potential compounds identified in the Rehmanniae Radix Preparata (RRP) aqueous extract. (a) HPLC chromatogram of RRP (λ = 334nm). The peaks in chromatogram were identified by LC-MSn as followings: (1) Echinacoside, (2) Jionoside A1/A2, (3) Acetoside, (4) Isoacetoside, (5) Jionoside B1, (6) Jionoside B2. (b) HPLC chromatogram of standard acetoside (λ = 334nm). (c) Chemical structures of six compounds in RRP aqueous extract. (PNG 214 kb)

198_2018_4670_MOESM1_ESM.tif (681 kb)
High resolution image (TIF 681 kb)
198_2018_4670_MOESM2_ESM.docx (25 kb)
Supplementary table 1 (DOCX 24 kb)

References

  1. 1.
    Liu C, Ma R, Wang L, Zhu R, Liu H, Guo Y, Zhao B, Zhao S, Tang J, Li Y, Fu M, Zhang D, Gao S (2017) Rehmanniae Radix in osteoporosis: A review of traditional Chinese medicinal uses, phytochemistry, pharmacokinetics and pharmacology. J Ethnopharmacol 198:351–362CrossRefGoogle Scholar
  2. 2.
    Zhang X (2014) Experimental study of Selaginella and Rehmannia glutinosa libosch extract on rats with osteoporosis intervention of the ovary. Science of Chinese materia medica. Henan University of Chinese Medicine, p 73Google Scholar
  3. 3.
    Oha K-O, Kim S-W, Kim J-Y, Ko S-Y, Kim H-M, Baek J-H, Hyun-Mo Ryoo KJ-K (2003) Effect of Rehmannia glutinosa Libosch extracts on bone metabolism. Clin Chim Acta 334:185–195CrossRefGoogle Scholar
  4. 4.
    Chen Y, Qu C, Zhong H, Xue Y, Zhou C, Li W, Cheng X (1994) Effects of Liuwei Dihuang wan and some other TCM drugs on bone biomechanics and serum 25 (OH) D3 content in rats. J Tradit Chin Med 14:298–302Google Scholar
  5. 5.
    Sun H, Zhang N, Li LJ, Wang XJ (2006) Promoting effect of constituents in plasma after oral administration of Liuwei Dihuang wan on proliferation of rat osteoblast. China J Chin Mater Med 33:2161–2164Google Scholar
  6. 6.
    Peng SF (2007) Study of added decoction of six drugs containing Rehmannia root on osteoporosis after menopause. Mod J Integr Tradit Chin West Med 16:4592–4593Google Scholar
  7. 7.
    Xia B, Xu B, Sun Y, Xiao L, Pan J, Jin H, Tong P (2014) The effects of Liuwei Dihuang on canonical Wnt/β-catenin signaling pathway in osteoporosis. J Ethnopharmacol 153:133–143CrossRefGoogle Scholar
  8. 8.
    Wang L, Li Y, Guo Y, Ma R, Fu M, Niu J, Gao S, Zhang D (2016) Herba epimedii: an ancient Chinese herbal medicine in the prevention and treatment of osteoporosis. Curr Pharm Des 22:328–349CrossRefGoogle Scholar
  9. 9.
    Lin X, Xiong D, Peng YQ, Sheng ZF, Wu XY, Wu XP, Wu F, Yuan LQ, Liao EY (2015) Epidemiology and management of osteoporosis in the People’s Republic of China: current perspectives. Clin Interv Aging 10:1017–1033Google Scholar
  10. 10.
    Tabatabaei-Malazy O, Salari P, Khashayar P, Larijani B (2017) New horizons in treatment of osteoporosis. Daru 25:2CrossRefGoogle Scholar
  11. 11.
    Guo Y, Li Y, Xue L, Severino RP, Gao S, Niu J, Qin LP, Zhang D, Bromme D (2014) Salvia miltiorrhiza: an ancient Chinese herbal medicine as a source for anti-osteoporotic drugs. J Ethnopharmacol 155:1401–1416CrossRefGoogle Scholar
  12. 12.
    Hu J, Mao Z, He S, Zhan Y, Ning R, Liu W, Yan B, Yang J (2017) Icariin protects against glucocorticoid induced osteoporosis, increases the expression of the bone enhancer DEC1 and modulates the PI3K/Akt/GSK3beta/beta-catenin integrated signaling pathway. Biochem Pharmacol 136:109–121CrossRefGoogle Scholar
  13. 13.
    Sheng H, Li W, Sheng C, Chen X, Su B, Li H, Yu Y, Xu G, Zhang G, Wu G, Qin L, Qu S (2012) Experimental study of GSK-3β for the development of anti-diabetic molecular target drug for bone protection. The Proceedings of the Eleventh Endocrine Academic Conference 2Google Scholar
  14. 14.
    Tsentidis C, Gourgiotis D, Kossiva L, Marmarinos A, Doulgeraki A, Karavanaki K (2017) Increased levels of Dickkopf-1 are indicative of Wnt/beta-catenin downregulation and lower osteoblast signaling in children and adolescents with type 1 diabetes mellitus, contributing to lower bone mineral density. Osteoporosis Int 28:945–953CrossRefGoogle Scholar
  15. 15.
    Appelman-Dijkstra NM, Papapoulos SE (2016) Sclerostin inhibition in the management of osteoporosis. Calcif Tissue Int 98:370–380CrossRefGoogle Scholar
  16. 16.
    Boyce BF, Xing L (2007) The RANKL/RANK/OPG pathway. Curr Osteoporos Rep 5:98–104CrossRefGoogle Scholar
  17. 17.
    Fassio A, Rossini M, Viapiana O, Idolazzi L, Vantaggiato E, Benini C, Gatti D (2017) New Strategies for the Prevention and Treatment of Systemic and Local Bone Loss: from Pathophysiology to Clinical Application. Curr Pharm Des 23:6241–6250CrossRefGoogle Scholar
  18. 18.
    Brömme D, Panwar P, Turan S (2016) Cathepsin K osteoporosis trials, pycnodysostosis and mouse deficiency models: commonalities and differences. Expert Opin Drug Discovery 11:457–472CrossRefGoogle Scholar
  19. 19.
    Wang L, Ma R, Guo Y, Sun J, Liu H, Zhu R, Liu C, Li J, Li L, Chen B, Sun L, Tang J, Zhao D, Mo F, Niu J, Jiang G, Fu M, Brömme D, Zhang D, Gao S (2017) Antioxidant effect of fructus ligustri lucidi aqueous extract in ovariectomized rats is mediated through Nox4-ROS-NF-kappaB pathway. Front Pharmacol 8:266CrossRefGoogle Scholar
  20. 20.
    Nielsen SS (2010) Phenol-sulfuric acid method for total carbohydrates. In: Nielsen SS (ed) Food analysis laboratory manual. Springer US, Boston, pp 47–53CrossRefGoogle Scholar
  21. 21.
    Jain VM, Karibasappa GN, Dodamani AS, Mali GV (2017) Estimating the carbohydrate content of various forms of tobacco by phenol-sulfuric acid method. J Educ Health Promot 6(90):90CrossRefGoogle Scholar
  22. 22.
    Ueyama T, Yamamoto Y, Ueda K, Yajima A, Maeda Y, Yamashita Y, Ito T, Tsuruo Y, Ichinose M (2013) Is gastrectomy-induced high turnover of bone with hyperosteoidosis and increase of mineralization a typical osteomalacia. PLoS One 8:e65685CrossRefGoogle Scholar
  23. 23.
    Ma R, Wang L, Zhao B, Liu C, Liu H, Zhu R, Chen B, Li L, Zhao D, Mo F, Li Y, Niu J, Jiang G, Fu M, Dieter B, Zhang D, Gao S. (2017) Diabetes Perturbs Bone Microarchitecture and Bone Strength through Regulation of Sema3A/IGF-1/β-Catenin in Rats. Cell Physiol Biochem 41:55–66CrossRefGoogle Scholar
  24. 24.
    Guo Y, Wang L, Ma R, Mu Q, Yu N, Zhang Y, Tang Y, Li Y, Jiang G, Zhao D, Mo F, Gao S, Yang M, Kan F, Fu M, Zhang D (2016) JiangTang XiaoKe granule attenuates cathepsin K expression and improves IGF-1 expression in the bone of high fat diet induced KK-Ay diabetic mice. Life Sci 148:24–30.CrossRefGoogle Scholar
  25. 25.
    Mathews S, Mathew SA, Gupta PK, Bhonde R, Totey S (2014) Glycosaminoglycans enhance osteoblast differentiation of bone marrow derived human mesenchymal stem cells. J Tissue Eng Regen Med 8:143–152CrossRefGoogle Scholar
  26. 26.
    Song L, Zhao J, Zhang X, Li H, Zhou Y (2013) Icariin induces osteoblast proliferation, differentiation and mineralization through estrogen receptor-mediated ERK and JNK signal activation. Eur J Pharmacol 714:15–22CrossRefGoogle Scholar
  27. 27.
    Baron R, Kneissel M (2013) WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 19:179–192CrossRefGoogle Scholar
  28. 28.
    Jiang Z, Wang H, Yu K, Feng Y, Wang Y, Huang T, Lai K, Xi Y, Yang G (2017) Light-Controlled BMSC Sheet-implant Complexes with Improved Osteogenesis via an LRP5/β-Catenin/Runx2 Regulatory Loop. ACS Appl Mater Interfaces 9:34674–34686CrossRefGoogle Scholar
  29. 29.
    Shu R, Ai D, Bai D, Song J, Zhao M, Han X (2017) The effects of SOST on implant osseointegration in ovariectomy osteoporotic mice. Arch Oral Biol 74:82–91CrossRefGoogle Scholar
  30. 30.
    Zhang C, Liao Q, Ming J, Hu G, Chen Q, Liu S, Li Y (2017) The effects of chitosan oligosaccharides on OPG and RANKL expression in a rat osteoarthritis model. Acta Cir Bras 32:418–428CrossRefGoogle Scholar
  31. 31.
    Ge J, Xie L, Chen J, Li S, Xu H, Lai Y, Qiu L, Ni C (2016) Liuwei Dihuang pill treats postmenopausal osteoporosis with Shen (kidney) yin deficiency via Janus kinase/signal transducer and activator of transcription signal pathway by up-regulating cardiotrophin-like cytokine factor 1 expression. Chin J Integr Med 24:415–422CrossRefGoogle Scholar
  32. 32.
    Xia B, Xu B, Sun Y, Xiao L, Pan J, Jin H, Tong P (2014) The effects of Liuwei Dihuang on canonical Wnt/beta-catenin signaling pathway in osteoporosis. J Ethnopharmacol 153:133–141CrossRefGoogle Scholar
  33. 33.
    Lim DW, Kim YT (2013) Dried root of Rehmannia glutinosa prevents bone loss in ovariectomized rats. Molecules 18:5804–5813CrossRefGoogle Scholar
  34. 34.
    Wu T, Zou L, He H, Wu KW (2015) Prevention of Radix Rehmanniae Preparata on glucocorticoid-induced osteoporosis in rats. Chem Eng Trans 46:67–72Google Scholar
  35. 35.
    Jiang JM, Sacco SM, Ward WE (2008) Ovariectomy-induced hyperphagia does not modulate bone mineral density or bone strength in rats. J Nutr 138:2106–2110CrossRefGoogle Scholar
  36. 36.
    Chen Y, Heiman ML (2001) Increased weight gain after ovariectomy is not a consequence of leptin resistance. Am J Phys Endocrinol Metab 280:E315–E322CrossRefGoogle Scholar
  37. 37.
    Wu P, Wu S, Tsai Y, Lin Y, Chao J (2011) Hot water extracted Lycium barbarum and Rehmannia glutinosa inhibit liver inflammation and fibrosis in rats. Am J Chin Med 39:1173–1191CrossRefGoogle Scholar
  38. 38.
    Zhou J, Xu G, Yan J, Li K, Bai Z, Cheng W, Huang K (2015) Rehmannia glutinosa (Gaertn.) DC. polysaccharide ameliorates hyperglycemia, hyperlipemia and vascular inflammation in streptozotocin-induced diabetic mice. J Ethnopharmacol 164:229–238CrossRefGoogle Scholar
  39. 39.
    Sheng L, Xing GS, Wang Y, Tan ZL, Lou JS (2006) The effect of Rehmanniae Radix Preparata on biochemical markers of bone metabolism and the bone mineral density in ovariectomized rats. Chin J Osteoporos 12:496–498Google Scholar
  40. 40.
    Li J, Sarosi I, Cattley RC, Pretorius J, Asuncion F, Grisanti M, Morony S, Adamu S, Geng Z, Qiu W, Kostenuik P, Lacey DL, Simonet WS, Bolon B, Qian X, Shalhoub V, Ominsky MS, Zhu Ke H, Li X, Richards WG. (2006) Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia. Bone 39:754–766CrossRefGoogle Scholar
  41. 41.
    Zhang N (2016) Studies on chemical constituents and mechanism of Rehmanniae Radix Preparata for diabetic osteoporosis based on molecular docking strategy. Chinese Medicinal Resources. Second Military Medical University, Nanjing, p 97Google Scholar
  42. 42.
    Amirhosseini M, Madsen RV, Escott KJ, Bostrom MP, Ross FP, Fahlgren A (2018) GSK-3beta inhibition suppresses instability-induced osteolysis by a dual action on osteoblast and osteoclast differentiation. J Cell Physiol 233:2398–2408CrossRefGoogle Scholar
  43. 43.
    Li F, Yang Y, Zhu P, Chen W, Qi D, Shi X, Zhang C, Yang Z, Li P (2012) Echinacoside promotes bone regeneration by increasing OPG/RANKL ratio in MC3T3-E1 cells. Fitoterapia 83:1443–1450CrossRefGoogle Scholar
  44. 44.
    Masanobu Kawai RCJ (2012) The insulin-like growth factor system in bone. Endocrinol Metab Clin 41:323–333CrossRefGoogle Scholar
  45. 45.
    Sheng MH, Lau KH, Baylink DJ (2014) Role of osteocyte-derived insulin-like growth factor I in developmental growth, modeling, remodeling, and regeneration of the bone. J Bone Miner Metab 21:41–54CrossRefGoogle Scholar
  46. 46.
    Ardawi MS, Akhbar DH, Alshaikh A, Ahmed MM, Qari MH, Rouzi AA, Ali AY, Abdulrafee AA, Saeda MY (2013) Increased serum sclerostin and decreased serum IGF-1 are associated with vertebral fractures among postmenopausal women with type-2 diabetes. Bone 56:355–362CrossRefGoogle Scholar
  47. 47.
    Lindberg MK, Svensson J, Venken K, Chavoshi T, Andersson N, Moverare Skrtic S, Isaksson O, Vanderschueren D, Carlsten H, Ohlsson C (2006) Liver-derived IGF-I is permissive for ovariectomy-induced trabecular bone loss. Bone 38:85–92CrossRefGoogle Scholar
  48. 48.
    Li F, Yang X, Yang Y, Guo C, Zhang C, Yang Z, Li P (2013) Antiosteoporotic activity of echinacoside in ovariectomized rats. Phytomedicine 20:549–557CrossRefGoogle Scholar
  49. 49.
    Van Kiem P, Quang TH, Huong TT, le TH N, Cuong NX, Van Minh C, Choi EM, Kim YH (2008) Chemical constituents of Acanthus ilicifolius L. and effect on osteoblastic MC3T3E1 cells. Arch Pharm Res 31:823–829CrossRefGoogle Scholar
  50. 50.
    Yan H, Lu J, Wang Y, Gu W, Yang X, Yu J (2017) Intake of total saponins and polysaccharides from Polygonatum kingianum affects the gut microbiota in diabetic rats. Phytomedicine 26:45–54CrossRefGoogle Scholar
  51. 51.
    Xu X, Jia X, Mo L, Liu C, Zheng L, Yuan Q, Zhou X (2017) Intestinal microbiota: a potential target for the treatment of postmenopausal osteoporosis. Bone Res 5:17046CrossRefGoogle Scholar
  52. 52.
    Andreollo NA, Santos EF, Araujo MR, Lopes LR (2012) Rat’s age versus human’s age: what is the relationship? Arq Bras Cir Dig 25:49–51CrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2018

Authors and Affiliations

  • C. Liu
    • 1
    • 2
  • L. Wang
    • 1
    • 2
  • R. Zhu
    • 1
  • H. Liu
    • 1
  • R. Ma
    • 1
    • 3
  • B. Chen
    • 1
  • L. Li
    • 1
  • Y. Guo
    • 1
    • 4
  • Q. Jia
    • 1
  • S. Shi
    • 2
  • D. Zhao
    • 1
  • F. Mo
    • 1
  • B. Zhao
    • 2
  • J. Niu
    • 1
  • M. Fu
    • 5
  • A.N. Orekhov
    • 6
  • D. Brömme
    • 7
  • S. Gao
    • 1
  • D. Zhang
    • 1
    Email author
  1. 1.Diabetes Research Center, Traditional Chinese Medicine SchoolBeijing University of Chinese MedicineBeijingPeople’s Republic of China
  2. 2.Chinese Materia Medica SchoolBeijing University of Chinese MedicineBeijingChina
  3. 3.Guang’anmen HospitalChina Academy of Chinese Medical SciencesBeijingChina
  4. 4.The Third Affiliated Clinical HospitalBeijing University of Chinese MedicineBeijingChina
  5. 5.The Research Institute of McGill University Health CenterMontrealCanada
  6. 6.Laboratory of Angiopathology, Russian Academy of Medical SciencesInstitute of General Pathology and PathophysiologyMoscowRussia
  7. 7.Department of Oral Biological & Medical Sciences, Faculty of DentistryThe University of British ColumbiaVancouverCanada

Personalised recommendations