Osteoporosis International

, Volume 29, Issue 11, pp 2565–2573 | Cite as

Monocytes from male patients with ankylosing spondylitis display decreased osteoclastogenesis and decreased RANKL/OPG ratio

  • V.F. Caparbo
  • C.G.S. Saad
  • J.C. Moraes
  • A.J. de Brum-Fernandes
  • R.M.R. PereiraEmail author
Original Article



The present study investigates the osteoclastogenic capacity of peripheral blood mononuclear cells (PBMCs) in male patients with ankylosing spondylitis (AS). We demonstrated that monocytes from these patients display a lower capacity to generate osteoclasts compared to cells from healthy controls, and osteoclastogenesis was negatively correlated with disease duration.


Ankylosing spondylitis (AS) is a disease characterized by new bone growth that leads to syndesmophyte formation but AS patients frequently present with low bone mineral density/fractures. Osteoclastogenesis in AS patients is poorly studied and controversial. The aim of this study is to determine if the osteoclastogenic capacity of PBMCs is different in AS patients compared to controls and the relationship between osteoclastogenesis and clinical/laboratory parameters.


PBMCs from 85 male AS patients and 59 controls were tested for CD16+ cells and induced to differentiate into osteoclasts over 3 weeks in vitro. Serum levels of RANKL, osteoprotegerin (OPG), C-terminal telopeptide of type I collagen (CTX), and amino-terminal pro-peptide of type I collagen (P1NP) were also evaluated.


PBMCs from AS patients had fewer CD16+ cells and produced fewer osteoclasts compared to controls. Apoptosis occurred less frequently in osteoclasts obtained from AS patients than in osteoclasts from the controls. A lower RANKL/OPG and CTX/P1NP were observed in AS patients compared to controls. AS patients taking NSAIDs presented no difference regarding the number of OCs produced and the percentage of CD16+ cells compared to controls. However, patients taking TNF inhibitors (TNFi) presented lower OC numbers than controls. A negative correlation was demonstrated between the number of osteoclasts generated from PBMCs of AS patients and disease duration.


Monocytes from male AS patients display a lower capacity to generate osteoclasts in vitro compared to cells from controls. Osteoclastogenesis was negatively correlated with disease duration. This finding supports the idea that osteoclasts play a role in the physiopathology of bone disease in AS patients.


Ankylosing spondylitis Apoptosis CTX Osteoclastogenesis Osteoprotegerin P1NP RANKL 



This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) #2011/23781-2 and Conselho Nacional de Ciência e Tecnologia (CNPQ) #301805/2013-0 (RMRP).

Compliance with ethical standards

This study was approved by the Local Ethics Committee on Human Research at the Sao Paulo University-CAPPesq 0061/11.

Conflicts of interest

Valeria F. Caparbo, Carla GS Saad, Julio CB Moares, Artur J de Brum-Fernandes, and Rosa MR Pereira declare no conflicts of interest and no competing financial interests.


  1. 1.
    Karsdal MA, Martin TJ, Bollerslev J, Christiansen C, Henriksen K (2007) Are nonresorbing osteoclasts sources of bone anabolic activity? J Bone Miner Res 22(4):487–494CrossRefGoogle Scholar
  2. 2.
    Sprangers S, de Vries TJ, Everts V (2016) Review article: monocyte heterogeneity: consequences for monocyte-derived immune cells. J Immunol Res 1475435Google Scholar
  3. 3.
    Sprangers S, Schoenmaker T, Cao Y, Everts V, de Vries TJ (2016) Different blood-borne human osteoclast precursors respond in distinct ways to IL-17A. J Cell Physiol 231(6):1249–1260CrossRefGoogle Scholar
  4. 4.
    Xiong H, Pamer EG (2015) Review article: monocytes and infection: modulator, messenger and effector. Immunobiology 220(2):210–214CrossRefGoogle Scholar
  5. 5.
    Wong KL, Yeap WH, Tai JJ, Ong SM, Dang TM, Wong SCL (2012) The three human monocyte subsets: implications for health and disease. Immunol Res 53(1–3):41–57CrossRefGoogle Scholar
  6. 6.
    Im CH, Kang EH, Ki JY, Shin DW, Choi HJ, Chang EJ, Lee EY, Lee YJ, Lee EB, Kim HH, Song YW (2009) Receptor activator of nuclear factor kappa B ligand mediated osteoclastogenesis is elevated in ankylosing spondylitis. Clin Exp Rheumatol 27:620–625PubMedGoogle Scholar
  7. 7.
    Colina M, Penolazzi L, DI Ciano M, Lambertini E, Ciancio G, Orzincolo C, Trotta F, Govoni M, Piva R (2013) Osteoclasts from peripheral blood mononuclear cells culture of ankylosing spondylitis subjects are resistant to apoptosis. Biom Prev Nutr 3:253–259CrossRefGoogle Scholar
  8. 8.
    Dougados M, Baeten D (2011) Spondyloarthritis. Lancet 377(9783):2127–2137CrossRefGoogle Scholar
  9. 9.
    Lories RJ, Schett G (2012) Pathophysiology of new bone formation and ankylosis in spondyloarthritis. Rheum Dis Clin N Am 38(3):555–567CrossRefGoogle Scholar
  10. 10.
    Singh HJ, Nimarpreet K, Ashima DS, Kumar A, Prakash S (2013) Study of bone mineral density in patients with ankylosing spondylitis. J Clin Diagn Res 7(12):2832–2835PubMedPubMedCentralGoogle Scholar
  11. 11.
    Briot K, Roux C (2015) Review article: inflammation, bone loss and fracture risk in spondyloarthritis. RMD Open 14(1):e000052CrossRefGoogle Scholar
  12. 12.
    Carter S, Lories RJ (2011) Osteoporosis: a paradox in ankylosing spondylitis. Curr Osteoporos Rep 9(3):112–115CrossRefGoogle Scholar
  13. 13.
    Appel H, Kuhne M, Spiekermann S, Köhler D, Zacher J, Stein H, Sieper J, Loddenkemper C (2006) Immunohistochemical analysis of hip arthritis in ankylosing spondylitis: evaluation of the bone-cartilage interface and subchondral bone marrow. Arthritis Rheum 54(6):1805–1813CrossRefGoogle Scholar
  14. 14.
    Lories RJ, Luyten FP, de Vlam K (2009) Progress in spondyloarthritis. Mechanisms of new bone formation in spondyloarthritis. Arthritis Res Ther 11(2):221CrossRefGoogle Scholar
  15. 15.
    Perpétuo IP, Raposeiro R, Caetano-Lopes J, Vieira-Sousa E, Campanilho-Marques R, Ponte C, Canhão H, Ainola M, Fonseca JE (2015) Effect of tumor necrosis factor inhibitor therapy on osteoclasts precursors in ankylosing spondylitis. PLoS One (10, 12):e0144655CrossRefGoogle Scholar
  16. 16.
    van der Linden S, Valkenburg HA, Cats A (1984) Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum 27:361–368CrossRefGoogle Scholar
  17. 17.
    Sieper J, Rudwaleit M, Baraliakos X, Brandt J, Braun J, Burgos-Vargas R, Dougados M, Hermann KG, Landewé R, Maksymowych W, van der Heijde (2009) The assessment of SpondyloArthritis international Society (ASAS) handbook: a guide to assess spondyloarthritis. Ann Rheum Dis 68(Suppl 2):ii1–i44CrossRefGoogle Scholar
  18. 18.
    Machado P, Landewé R, Lie E, Kvien TK, Braun J, Baker D, van der Heijde D (2011) Ankylosing spondylitis disease activity score (ASDAS): defining cut-off values for disease activity states and improvement scores. Ann Rheum Dis 70:47–53CrossRefGoogle Scholar
  19. 19.
    Creemers MC, Franssen MJ, Van't Hof MA, Gribnau FW, van de Putte LB, van Riel PL (2005) Assessment of outcome in ankylosing spondylitis: an extended radiographic scoring system. Ann Rheum Dis 64(1):127–129CrossRefGoogle Scholar
  20. 20.
    Manolson MF, Yu H, Chen W, Yao Y, Li K, Lees RL, Heersche JN (2003) The a3 isoform of the 100-kDa V-ATPase subunit is highly but differentially expressed in large (>or=10 nuclei) and small (<or= nuclei) osteoclasts. J Biol Chem 278(49):49271–49278CrossRefGoogle Scholar
  21. 21.
    Durand M, Boire G, Komarova SV, Dixon SJ, Sims SM, Harrison RE, Nabavi N, Maria O, Manolson MF, Mizianty M, Kurgan L, de Brum-Fernandes AJ (2011) The increased in vitro osteoclastogenesis in patients with rheumatoid arthritis is due to increased percentage of precursors and decreased apoptosis—the In Vitro Osteoclast Differentiation in Arthritis (IODA) study. Bone 48(3):588–596CrossRefGoogle Scholar
  22. 22.
    Durand M, Komarova SV, Bhargava A, Dixon SJ, Sims SM, Harrison RE, Nabavi N, Maria O, Manolson MF, Mizianty M, Kurgan L, de Brum-Fernandes AJ (2013) Monocytes from patients with osteoarthritis display increased osteoclastogenesis and bone resorption: the In Vitro Osteoclast Differentiation in Arthritis study. Arthritis Rheum 65(1):148–158CrossRefGoogle Scholar
  23. 23.
    Spelling P, Bonfá E, Caparbo VF, Pereira RM (2008) Osteoprotegerin/RANKL system imbalance in active polyarticular-onset juvenile idiopathic arthritis: a bone damage biomarker? Scand J Rheumatol 37(6):439–444CrossRefGoogle Scholar
  24. 24.
    Seguro LP, Casella CB, Caparbo VF, Oliveira RM, Bonfa A, Bonfa E, Pereira RM (2015) Lower P1NP serum levels: a predictive marker of bone loss after 1 year follow-up in premenopausal systemic lupus erythematosus patients. Osteoporos Int 26(2):459–467CrossRefGoogle Scholar
  25. 25.
    MCculluch CE, Searle SR (2001) Generalized, linear and mixed models. Wiley, New YorkGoogle Scholar
  26. 26.
    Dubost JJ, Sauvezie B (1989) Late onset peripheral spondyloarthropathy. J Rheumatol 16(9):1214–1217PubMedGoogle Scholar
  27. 27.
    Webers C, Essers I, Ramiro S, Stolwijk C, Landewé R, van der Heijde D, van den Bosch F, Dougados M, van Tubergen A (2016) Gender-attributable differences in outcome of ankylosing spondylitis: long-term results from the Outcome in Ankylosing Spondylitis International Study. Rheumatology (Oxford) 55(3):419–428Google Scholar
  28. 28.
    Runolfsdottir HL, Sigurdsson G, Franzson L, Indridason OS (2015) Gender comparison of factors associated with age-related differences in bone mineral density. Arch Osteoporos 10:214CrossRefGoogle Scholar
  29. 29.
    Chen CH, Chen HA, Liao HT, Liu CH, Tsai CY, Chou CT (2010) Soluble receptor activator of nuclear factor-kappaB ligand (RANKL) and osteoprotegerin in ankylosing spondylitis: OPG is associated with poor physical mobility and reflects systemic inflammation. Clin Rheumatol 29(10):1155–1161CrossRefGoogle Scholar
  30. 30.
    Klingberg E, Nurkkala M, Carlsten H, Forsblad-d'Elia H (2014) Biomarkers of bone metabolism in ankylosing spondylitis in relation to osteoproliferation and osteoporosis. J Rheumatol 41(7):1349–1356CrossRefGoogle Scholar
  31. 31.
    Franck H, Meurer T, Hofbauer LC (2004) Evaluation of bone mineral density, hormones,biochemical markers of bone metabolism, and osteoprotegerin serum levels in patients with ankylosing spondylitis. J Rheumatol 31(11):2236–2241PubMedGoogle Scholar
  32. 32.
    Goh L, Suresh P, Gafoor A, Hughes P, Hickling P (2008) Disease activity in longstanding ankylosing spondylitis: a correlation of clinical and magnetic resonance imaging findings. Clin Rheumatol 27(4):449–455CrossRefGoogle Scholar
  33. 33.
    Toussirot E, Wendling D (2007) Antiinflammatory treatment with bisphosphonates in ankylosing spondylitis. Curr Opin Rheumatol 19(4):340–345 ReviewCrossRefGoogle Scholar
  34. 34.
    van der Weijden MA, Claushuis TA, Nazari T, Lems WF, Dijkmans BA, van der Horst-Bruinsma IE (2012) High prevalence of low bone mineral density in patients within 10 years of onset of ankylosing spondylitis: a systematic review. Clin Rheumatol 31(11):1529–1535CrossRefGoogle Scholar
  35. 35.
    Magrey MN, Lewis S, Asim Khan M (2016) Utility of DXA scanning and risk factors for osteoporosis in ankylosing spondylitis—a prospective study. Semin Arthritis Rheum 46(1):88–94CrossRefGoogle Scholar
  36. 36.
    Surdacki A, Sulicka J, Korkosz M, Mikolajczyk T, Telesinska-Jasiówka D, Klimek E, Kierzkowska I, Guzik T, Grodzicki TK (2014) Blood monocyte heterogeneity and markers of endothelial activation in ankylosing spondylitis. J Rheumatol 41(3):481–489CrossRefGoogle Scholar
  37. 37.
    Francois RJ, Neure L, Sieper J, Braun J (2006) Immunohistological examination of open sacroiliac biopsies of patients with ankylosing spondylitis: detection of tumor necrosis factor a in two patients with early disease and transforming growth factor b in three more advanced cases. Ann Rheum Dis 65:713–720CrossRefGoogle Scholar
  38. 38.
    Marzo-Ortega H, O'Connor P, Emery P, MCgonagle D (2007) Sacroiliac joint biopsies in early sacroilitis. Rheumatol 46:1210–1211CrossRefGoogle Scholar
  39. 39.
    Kawashima M, Fujikawa Y, Itonaga I, Takita C, Tsumura H (2009) The effect of selective cyclooxygenase-2 inhibitor on human osteoclast precursors to influence osteoclastogenesis in vitro. Mod Rheumatol 19:192–198CrossRefGoogle Scholar
  40. 40.
    Karakawa A, Fukawa Y, Okazaki M, Takahashi K, Sano T, Amano H, Yamamoto M, Yamada S (2009) Diclofenac sodium inhibits NFkappaB transcription in osteoclasts. J Dent Res 88(11):1042–1047CrossRefGoogle Scholar
  41. 41.
    Kotake S, Yago T, Kawamoto M, Nanke Y (2010) Review article: Effects of NSAIDs on differentiation and function of human and murine osteoclasts—crucial ‘human osteoclastology’. Pharmaceuticals (Basel) 3(5):1394–1410CrossRefGoogle Scholar
  42. 42.
    Salari P, Abdollahi M (2009) Review article: controversial effects of non-steroidal anti-inflammatory drugs on bone: a review. Inflamm Allergy Drug Targets 8(3):169–175CrossRefGoogle Scholar
  43. 43.
    Nakao A, Fukushima H, Kajiya H, Ozeki S, Okabe K (2007) RANKL-stimulated TNFalpha production in osteoclast precursor cells promotes osteoclastogenesis by modulating RANK signaling pathways. Biochem Biophys Res Commun 357(4):945–950CrossRefGoogle Scholar
  44. 44.
    Grazio S, Kusić Z, Cvijetić S, Grubišić F, Balenović A, Nemčić T, Matijević-Mikelić V, Punda M, Sieper J (2012) Relationship of bone mineral density with disease activity and functional ability in patients with ankylosing spondylitis: a cross-sectional study. Rheumatol Int 32(9):2801–2808CrossRefGoogle Scholar
  45. 45.
    Sarikaya S, Basaran A, Tekin Y, Ozdolap S, Ortancil O (2007) Is osteoporosis generalized or localized to central skeleton in ankylosing spondylitis? J Clin Rheumatol 13(1):20–24CrossRefGoogle Scholar
  46. 46.
    Wanders A, Heijde DV, Landewé R, Béhier JM, Calin A, Olivieri I, Zeidler H, Dougados M (2005) Nonsteroidal antiinflammatory drugs reduce radiographic progression in patients with ankylosing spondylitis: a randomized clinical trial. Arthritis Rheum 52(6):1756–1765CrossRefGoogle Scholar
  47. 47.
    Poddubnyy D, Rudwaleit M, Haibel H, Listing J, Märker-Hermann E, Zeidler H, Braun J, Sieper J (2012) Effect of non-steroidal anti-inflammatory drugs on radiographic spinal progression in patients with axial spondyloarthritis: results from the German Spondyloarthritis Inception Cohort. Ann Rheum Dis 71(10):1616–1622CrossRefGoogle Scholar
  48. 48.
    Durnez A, Paternotte S, Fechtenbaum J, Landewé RB, Dougados M, Roux C, Briot K (2013) Increase in bone density in patients with spondyloarthritis during anti-tumor necrosis factor therapy: 6-year followup study. J Rheumatol 40(10):1712–1718CrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2018

Authors and Affiliations

  1. 1.Bone Metabolism Laboratory, Rheumatology Division, Hospital das Clinicas HCFMUSPUniversidade de Sao Paulo, Sao PauloSão PauloBrazil
  2. 2.Département de médecine, Service de RhumatologieFaculté de médecine et des sciences de la santé Université de SherbrookeSherbrookeCanada

Personalised recommendations