Advertisement

Osteoporosis International

, Volume 30, Issue 2, pp 267–276 | Cite as

Pulsed electromagnetic fields: promising treatment for osteoporosis

  • T. Wang
  • L. Yang
  • J. Jiang
  • Y. Liu
  • Z. Fan
  • C. Zhong
  • C. HeEmail author
Review Article

Abstract

Osteoporosis (OP) is considered to be a well-defined disease which results in high morbidity and mortality. In patients diagnosed with OP, low bone mass and fragile bone strength have been demonstrated to significantly increase risk of fragility fractures. To date, various anabolic and antiresorptive therapies have been applied to maintain healthy bone mass and strength. Pulsed electromagnetic fields (PEMFs) are employed to treat patients suffering from delayed fracture healing and nonunions. Although PEMFs stimulate osteoblastogenesis, suppress osteoclastogenesis, and influence the activity of bone marrow mesenchymal stem cells (BMSCs) and osteocytes, ultimately leading to retention of bone mass and strength. However, whether PEMFs could be taken into clinical use to treat OP is still unknown. Furthermore, the deeper signaling pathways underlying the way in which PEMFs influence OP remain unclear.

Keywords

BMSCs Osteoblasts Osteoclasts Osteocytes Osteoporosis PEMFs 

Abbreviations

ALP

alkaline phosphatase

BMD

bone mineral density

BMP-2

bone morphogenetic protein 2

BMSCs

bone marrow mesenchymal stem cells

BSAP

bone-specific alkaline phosphatase

CA II

carbonic anhydrase II

CTSK

cathepsin K

CTX

C-terminal telopeptide

DKK1

dickkopf-related protein 1

ECM

extracellular matrix

ERK

extracellular regulated protein kinases

GCs

glucocorticoids

GJIC

gap junction intercellular communication

HMGB1

high-mobility group protein B1

IGF

insulin-like growth factor

IL-1β

interleukin 1 beta

IL-6

interleukin 6

IRS-I

insulin receptor substrate-I

MMP

matrix metalloproteinase

mMSCs

mesenchymal marrow stromal/stem cells

mTOR

mammalian target of rapamycin

NFATC1

nuclear factor of activated T cells 1

NF-κB

nuclear factor kappa B

NO

nitric oxide

NOS

NO synthase

OC

osteocalcin

OP

osteoporosis

OPG

osteoprotegerin

OVX

ovariectomized

PEMF

pulsed electromagnetic fields

PGE2

prostaglandin E2

PINP

propeptide type I collagen

PMOP

postmenopausal osteoporosis

PPAR-γ

peroxisome proliferator-activated receptor gamma

PTH

parathyroid hormone

RANK

receptor-activator of nuclear factor kappa B

RANKL

RANK ligand

Runx2

runt-related transcription factor 2

SCI

spinal cord injury

TGF-β

transforming growth factor

TNF-α

tumor necrosis factor-alpha

TRAcP5b

tartrate-resistant acid phosphatase 5b

VEGF

vascular endothelial growth factor

Notes

Acknowledgments

We thank International Science Editing (http://www.internationalscienceediting.com) for editing this manuscript.

Funding information

This work was supported by Grants from National Natural ScienceFoundation of China (81572236 to C Q He), the Chengdu Bureau ofScience and Technology(No. 2015-HM02-00042-SF to C Q He )andSichuan science and Technology (No2015$Z0054 to C Q He).

Compliance with ethical standards

Conflicts of interest

None.

References

  1. 1.
    (2001) NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy, March 7-29, 2000: highlights of the conference. South Med J 94(6):569–73Google Scholar
  2. 2.
    Tanaka Y, Ohira T (2018) Mechanisms and therapeutic targets for bone damage in rheumatoid arthritis, in particular the RANK-RANKL system. Curr Opin Pharmacol 40:110–119Google Scholar
  3. 3.
    Minisola S, Scillitani A, Romagnoli E (2006) Alendronate or alfacalcidol in glucocorticoid-induced osteoporosis. N Engl J Med 355(20):2156–2157 author reply 7Google Scholar
  4. 4.
    Jacobs JW, de Nijs RN, Lems WF (2007) Prevention of glucocorticoid induced osteoporosis with alendronate or alfacalcidol: relations of change in bone mineral density, bone markers, and calcium homeostasis. J Rheumatol 34(5):1051–1057Google Scholar
  5. 5.
    Canalis E, Mazziotti G, Giustina A (2007) Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int 18(10):1319–1328Google Scholar
  6. 6.
    Liu H, Zhou J, Gu L (2017) The change of HCN1/HCN2 mRNA expression in peripheral nerve after chronic constriction injury induced neuropathy followed by pulsed electromagnetic field therapy. Oncotarget 8(1):1110–1116Google Scholar
  7. 7.
    Liu HF, Yang L, He HC (2013) Pulsed electromagnetic fields on postmenopausal osteoporosis in Southwest China: a randomized, active-controlled clinical trial. Bioelectromagnetics 34(4):323–332Google Scholar
  8. 8.
    Akhter MP, Wells DJ, Short SJ (2004) Bone biomechanical properties in LRP5 mutant mice. Bone 35(1):162–169Google Scholar
  9. 9.
    Garland DE, Adkins RH, Matsuno NN (1999) The effect of pulsed electromagnetic fields on osteoporosis at the knee in individuals with spinal cord injury. J Spinal Cord Med 22(4):239–245Google Scholar
  10. 10.
    Liu HF, He HC, Yang L (2015) Pulsed electromagnetic fields for postmenopausal osteoporosis and concomitant lumbar osteoarthritis in southwest China using proximal femur bone mineral density as the primary endpoint: study protocol for a randomized controlled trial. Trials 16:265Google Scholar
  11. 11.
    Wang T, He C, Yu X (2017) Pro-inflammatory cytokines: new potential therapeutic targets for obesity-related bone disorders. Curr Drug Targets 18(14):1664–1675Google Scholar
  12. 12.
    Sun LY, Hsieh DK, Yu TC (2009) Effect of pulsed electromagnetic field on the proliferation and differentiation potential of human bone marrow mesenchymal stem cells. Bioelectromagnetics 30(4):251–260Google Scholar
  13. 13.
    Jansen JH, van der Jagt OP, Punt BJ et al (2010) Stimulation of osteogenic differentiation in human osteoprogenitor cells by pulsed electromagnetic fields: an in vitro study. BMC Musculoskelet Disord 11:188Google Scholar
  14. 14.
    Spiegelman BM, Ginty CA (1983) Fibronectin modulation of cell shape and lipogenic gene expression in 3T3-adipocytes. Cell 35(3 Pt 2):657–666Google Scholar
  15. 15.
    Rodriguez Fernandez JL, Ben-Ze'ev A (1989) Regulation of fibronectin, integrin and cytoskeleton expression in differentiating adipocytes: inhibition by extracellular matrix and polylysine. Differentiation 42(2):65–74Google Scholar
  16. 16.
    McBeath R, Pirone DM, Nelson CM (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6(4):483–495Google Scholar
  17. 17.
    Ongaro A, Pellati A, Bagheri L (2014) Pulsed electromagnetic fields stimulate osteogenic differentiation in human bone marrow and adipose tissue derived mesenchymal stem cells. Bioelectromagnetics 35(6):426–436Google Scholar
  18. 18.
    Lu T, Huang YX, Zhang C (2015) Effect of pulsed electromagnetic field therapy on the osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells. Genet Mol Res 14(3):11535–11542Google Scholar
  19. 19.
    Ongaro A, Varani K, Masieri FF (2012) Electromagnetic fields (EMFs) and adenosine receptors modulate prostaglandin E(2) and cytokine release in human osteoarthritic synovial fibroblasts. J Cell Physiol 227(6):2461–2469Google Scholar
  20. 20.
    Vincenzi F, Targa M, Corciulo C (2013) Pulsed electromagnetic fields increased the anti-inflammatory effect of A(2)A and A(3) adenosine receptors in human T/C-28a2 chondrocytes and hFOB 1.19 osteoblasts. PLoS One 8(5):e65561Google Scholar
  21. 21.
    Gharibi B, Abraham AA, Ham J (2011) Adenosine receptor subtype expression and activation influence the differentiation of mesenchymal stem cells to osteoblasts and adipocytes. J Bone Miner Res 26(9):2112–2124Google Scholar
  22. 22.
    Lo KW, Kan HM, Ashe KM et al (2012) The small molecule PKA-specific cyclic AMP analogue as an inducer of osteoblast-like cells differentiation and mineralization. J Tissue Eng Regen Med 6(1):40–48Google Scholar
  23. 23.
    Carroll SH, Wigner NA, Kulkarni N (2012) A2B adenosine receptor promotes mesenchymal stem cell differentiation to osteoblasts and bone formation in vivo. J Biol Chem 287(19):15718–15727Google Scholar
  24. 24.
    Carroll SH, Ravid K (2013) Differentiation of mesenchymal stem cells to osteoblasts and chondrocytes: a focus on adenosine receptors. Expert Rev Mol Med 15:e1Google Scholar
  25. 25.
    Martin SK, Fitter S, Dutta AK (2015) Brief report: the differential roles of mTORC1 and mTORC2 in mesenchymal stem cell differentiation. Stem Cells 33(4):1359–1365Google Scholar
  26. 26.
    Sarbassov DD, Ali SM, Sengupta S (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22(2):159–168Google Scholar
  27. 27.
    Ferroni L, Gardin C, Dolkart O (2018) Pulsed electromagnetic fields increase osteogenetic commitment of MSCs via the mTOR pathway in TNF-alpha mediated inflammatory conditions: an in-vitro study. Sci Rep 8(1):5108Google Scholar
  28. 28.
    Diniz P, Shomura K, Soejima K (2002) Effects of pulsed electromagnetic field (PEMF) stimulation on bone tissue like formation are dependent on the maturation stages of the osteoblasts. Bioelectromagnetics 23(5):398–405Google Scholar
  29. 29.
    Chang WH, Chen LT, Sun JS et al (2004) Effect of pulse-burst electromagnetic field stimulation on osteoblast cell activities. Bioelectromagnetics 25(6):457–465Google Scholar
  30. 30.
    Li JK, Lin JC, Liu HC et al (2007) Cytokine release from osteoblasts in response to different intensities of pulsed electromagnetic field stimulation. Electromagn Biol Med 26(3):153–165Google Scholar
  31. 31.
    Chen J, He HC, Xia QJ (2010) Effects of pulsed electromagnetic fields on the mRNA expression of RANK and CAII in ovariectomized rat osteoclast-like cell. Connect Tissue Res 51(1):1–7Google Scholar
  32. 32.
    Sollazzo V, Palmieri A, Pezzetti F (2010) Effects of pulsed electromagnetic fields on human osteoblastlike cells (MG-63): a pilot study. Clin Orthop Relat Res 468(8):2260–2277Google Scholar
  33. 33.
    Fitzsimmons RJ, Ryaby JT, Mohan S (1995) Combined magnetic fields increase insulin-like growth factor-II in TE-85 human osteosarcoma bone cell cultures. Endocrinology 136(7):3100–3106Google Scholar
  34. 34.
    Lohmann CH, Schwartz Z, Liu Y (2000) Pulsed electromagnetic field stimulation of MG63 osteoblast-like cells affects differentiation and local factor production. J Orthop Res 18(4):637–646Google Scholar
  35. 35.
    Sun J, Liu X, Tong J et al (2014) Fluid shear stress induces calcium transients in osteoblasts through depolarization of osteoblastic membrane. J Biomech 47(16):3903–3908Google Scholar
  36. 36.
    Zhai M, Jing D, Tong S et al (2016) Pulsed electromagnetic fields promote in vitro osteoblastogenesis through a Wnt/beta-catenin signaling-associated mechanism. BioelectromagneticsGoogle Scholar
  37. 37.
    Lee JH, McLeod KJ (2000) Morphologic responses of osteoblast-like cells in monolayer culture to ELF electromagnetic fields. Bioelectromagnetics 21(2):129–136Google Scholar
  38. 38.
    Baron R, Kneissel M (2013) WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 19(2):179–192Google Scholar
  39. 39.
    Zhou J, Li X, Liao Y (2015) Pulsed electromagnetic fields inhibit bone loss in streptozotocin-induced diabetic rats. Endocrine 49(1):258–266Google Scholar
  40. 40.
    Patterson TE, Sakai Y, Grabiner MD (2006) Exposure of murine cells to pulsed electromagnetic fields rapidly activates the mTOR signaling pathway. Bioelectromagnetics 27(7):535–544Google Scholar
  41. 41.
    Schwartz Z, Simon BJ, Duran MA (2008) Pulsed electromagnetic fields enhance BMP-2 dependent osteoblastic differentiation of human mesenchymal stem cells. J Orthop Res 26(9):1250–1255Google Scholar
  42. 42.
    Mundy GR (2006) Nutritional modulators of bone remodeling during aging. Am J Clin Nutr 83(2):427s–430sGoogle Scholar
  43. 43.
    Bessa PC, Casal M, Reis RL (2008) Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). J Tissue Eng Regen Med 2(2–3):81–96Google Scholar
  44. 44.
    Smith TL, Wong-Gibbons D, Maultsby J (2004) Microcirculatory effects of pulsed electromagnetic fields. J Orthop Res 22(1):80–84Google Scholar
  45. 45.
    Mancini L, Moradi-Bidhendi N, Becherini L (2000) The biphasic effects of nitric oxide in primary rat osteoblasts are cGMP dependent. Biochem Biophys Res Commun 274(2):477–481Google Scholar
  46. 46.
    Chang K, Hong-Shong Chang W, Yu YH (2004) Pulsed electromagnetic field stimulation of bone marrow cells derived from ovariectomized rats affects osteoclast formation and local factor production. Bioelectromagnetics 25(2):134–141Google Scholar
  47. 47.
    Chang K, Chang WH, Tsai MT et al (2006) Pulsed electromagnetic fields accelerate apoptotic rate in osteoclasts. Connect Tissue Res 47(4):222–228Google Scholar
  48. 48.
    Chang K, Chang WH, Huang S (2005) Pulsed electromagnetic fields stimulation affects osteoclast formation by modulation of osteoprotegerin, RANK ligand and macrophage colony-stimulating factor. J Orthop Res 23(6):1308–1314Google Scholar
  49. 49.
    Borsje MA, Ren Y, de Haan-Visser HW et al (2010) Comparison of low-intensity pulsed ultrasound and pulsed electromagnetic field treatments on OPG and RANKL expression in human osteoblast-like cells. Angle Orthod 80(3):498–503Google Scholar
  50. 50.
    Lacey DL, Timms E, Tan HL (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93(2):165–176Google Scholar
  51. 51.
    Zhou J, Liao Y, Xie H (2017) Effects of combined treatment with ibandronate and pulsed electromagnetic field on ovariectomy-induced osteoporosis in rats. Bioelectromagnetics 38(1):31–40Google Scholar
  52. 52.
    Tschon M, Veronesi F, Contartese D (2018) Effects of pulsed electromagnetic fields and platelet rich plasma in preventing osteoclastogenesis in an in vitro model of osteolysis. J Cell Physiol 233(3):2645–2656Google Scholar
  53. 53.
    He J, Zhang Y, Chen J (2015) Effects of pulsed electromagnetic fields on the expression of NFATc1 and CAII in mouse osteoclast-like cells. Aging Clin Exp Res 27(1):13–19Google Scholar
  54. 54.
    Ishida N, Hayashi K, Hoshijima M (2002) Large scale gene expression analysis of osteoclastogenesis in vitro and elucidation of NFAT2 as a key regulator. J Biol Chem 277(43):41147–41156Google Scholar
  55. 55.
    Koga T, Matsui Y, Asagiri M (2005) NFAT and Osterix cooperatively regulate bone formation. Nat Med 11(8):880–885Google Scholar
  56. 56.
    Zhang J, Xu H, Han Z (2017) Pulsed electromagnetic field inhibits RANKL-dependent osteoclastic differentiation in RAW264.7 cells through the Ca(2+)-calcineurin-NFATc1 signaling pathway. Biochem Biophys Res Commun 482(2):289–295Google Scholar
  57. 57.
    Lohmann CH, Schwartz Z, Liu Y (2003) Pulsed electromagnetic fields affect phenotype and connexin 43 protein expression in MLO-Y4 osteocyte-like cells and ROS 17/2.8 osteoblast-like cells. J Orthop Res 21(2):326–334Google Scholar
  58. 58.
    Li JP, Chen S, Peng H (2014) Pulsed electromagnetic fields protect the balance between adipogenesis and osteogenesis on steroid-induced osteonecrosis of femoral head at the pre-collapse stage in rats. Bioelectromagnetics 35(3):170–180Google Scholar
  59. 59.
    Jiang Y, Gou H, Wang S et al (2016) Effect of pulsed electromagnetic field on bone formation and lipid metabolism of glucocorticoid-induced osteoporosis rats through canonical Wnt signaling pathway. Evid Based Complement Alternat Med 2016:4927035Google Scholar
  60. 60.
    Bassett CA (1989) Fundamental and practical aspects of therapeutic uses of pulsed electromagnetic fields (PEMFs). Crit Rev Biomed Eng 17(5):451–529Google Scholar
  61. 61.
    Juutilainen J, Lang S (1997) Genotoxic, carcinogenic and teratogenic effects of electromagnetic fields. Introduction and overview. Mutat Res 387(3):165–171Google Scholar
  62. 62.
    Huang LQ, He HC, He CQ (2008) Clinical update of pulsed electromagnetic fields on osteoporosis. Chin Med J 121(20):2095–2099Google Scholar
  63. 63.
    Roozbeh N, Abdi F (2018) Influence of radiofrequency electromagnetic fields on the fertility system: protocol for a systematic review and meta-analysis. JMIR Res Protoc 7(2):e33Google Scholar
  64. 64.
    Tabrah F, Hoffmeier M, Gilbert F Jr (1990) Bone density changes in osteoporosis-prone women exposed to pulsed electromagnetic fields (PEMFs). J Bone Miner Res 5(5):437–442Google Scholar
  65. 65.
    Tabrah FL, Ross P, Hoffmeier M (1998) Clinical report on long-term bone density after short-term EMF application. Bioelectromagnetics 19(2):75–78Google Scholar
  66. 66.
    Giordano N, Battisti E, Geraci S (2001) Effect of electromagnetic fields on bone mineral density and biochemical markers of bone turnover in osteoporosis: a single-blind, ramdomized pilot study. Curr Ther Res 62(3):187–193Google Scholar
  67. 67.
    Spadaro JA, Short WH, Sheehe PR (2011) Electromagnetic effects on forearm disuse osteopenia: a randomized, double-blind, sham-controlled study. Bioelectromagnetics 32(4):273–282Google Scholar
  68. 68.
    Matsunaga S, Sakou T, Ijiri K (1996) Osteogenesis by pulsing electromagnetic fields (PEMFs): optimum stimulation setting. In Vivo 10(3):351–356Google Scholar
  69. 69.
    Zati A, Gnudi S, Mongiorgi R (1993) Effects of pulsed magnetic fields in the therapy of osteoporosis induced by ovariectomy in the rat. Boll Soc Ital Biol Sper 69(7–8):469–475Google Scholar
  70. 70.
    Sert C, Mustafa D, Duz MZ et al (2002) The preventive effect on bone loss of 50-Hz, 1-mT electromagnetic field in ovariectomized rats. J Bone Miner Metab 20(6):345–349Google Scholar
  71. 71.
    Zhou J, Chen S, Guo H (2013) Pulsed electromagnetic field stimulates osteoprotegerin and reduces RANKL expression in ovariectomized rats. Rheumatol Int 33(5):1135–1141Google Scholar
  72. 72.
    Shen WW, Zhao JH (2010) Pulsed electromagnetic fields stimulation affects BMD and local factor production of rats with disuse osteoporosis. Bioelectromagnetics 31(2):113–119Google Scholar
  73. 73.
    Androjna C, Fort B, Zborowski M (2014) Pulsed electromagnetic field treatment enhances healing callus biomechanical properties in an animal model of osteoporotic fracture. Bioelectromagnetics 35(6):396–405Google Scholar
  74. 74.
    Jing D, Cai J, Wu Y (2014) Pulsed electromagnetic fields partially preserve bone mass, microarchitecture, and strength by promoting bone formation in hindlimb-suspended rats. J Bone Miner Res 29(10):2250–2261Google Scholar
  75. 75.
    Jing D, Cai J, Shen G (2011) The preventive effects of pulsed electromagnetic fields on diabetic bone loss in streptozotocin-treated rats. Osteoporos Int 22(6):1885–1895Google Scholar
  76. 76.
    Jing D, Li F, Jiang M (2013) Pulsed electromagnetic fields improve bone microstructure and strength in ovariectomized rats through a Wnt/Lrp5/beta-catenin signaling-associated mechanism. PLoS One 8(11):e79377Google Scholar
  77. 77.
    Jing D, Shen G, Huang J (2010) Circadian rhythm affects the preventive role of pulsed electromagnetic fields on ovariectomy-induced osteoporosis in rats. Bone 46(2):487–495Google Scholar
  78. 78.
    Chang K, Chang WH (2003) Pulsed electromagnetic fields prevent osteoporosis in an ovariectomized female rat model: a prostaglandin E2-associated process. Bioelectromagnetics 24(3):189–198Google Scholar
  79. 79.
    Wang T, Yu X, He C (2018) Pro-inflammatory cytokines: cellular and molecular drug targets for glucocorticoid-induced-osteoporosis via osteocyte. Curr Drug TargetsGoogle Scholar
  80. 80.
    Gao J, Cheng TS, Qin A (2016) Glucocorticoid impairs cell-cell communication by autophagy-mediated degradation of connexin 43 in osteocytes. Oncotarget 7(19):26966–26978Google Scholar
  81. 81.
    Watts NB, Bilezikian JP, Camacho PM, Greenspan S, Harris S, Hodgson S, Kleerekoper M, Luckey M, McClung M, Pollack R, Petak S (2010) American Association of Clinical Endocrinologists Medical Guidelines for Clinical Practice for the diagnosis and treatment of postmenopausal osteoporosis. Endocr Pract 16(Suppl 3):1–37Google Scholar
  82. 82.
    Lewiecki EM, Binkley N, Morgan SL (2016) Best practices for dual-energy X-ray absorptiometry measurement and reporting: International Society for Clinical Densitometry Guidance. J Clin Densitom 19(2):127–140Google Scholar
  83. 83.
    Lin HY, Lu KH (2010) Repairing large bone fractures with low frequency electromagnetic fields. J Orthop Res 28(2):265–270Google Scholar
  84. 84.
    Lin HY, Lin YJ (2011) In vitro effects of low frequency electromagnetic fields on osteoblast proliferation and maturation in an inflammatory environment. Bioelectromagnetics 32(7):552–560Google Scholar
  85. 85.
    Martino CF, Belchenko D, Ferguson V (2008) The effects of pulsed electromagnetic fields on the cellular activity of SaOS-2 cells. Bioelectromagnetics 29(2):125–132Google Scholar
  86. 86.
    Zhou J, Ming LG, Ge BF (2011) Effects of 50 Hz sinusoidal electromagnetic fields of different intensities on proliferation, differentiation and mineralization potentials of rat osteoblasts. Bone 49(4):753–761Google Scholar
  87. 87.
    Zhou J, Wang JQ, Ge BF (2012) Effect of 3.6-mT sinusoidal electromagnetic fields on proliferation and differentiation of osteoblasts in vitro. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 34(4):353–358Google Scholar
  88. 88.
    Cheng G, Zhai Y, Chen K (2011) Sinusoidal electromagnetic field stimulates rat osteoblast differentiation and maturation via activation of NO-cGMP-PKG pathway. Nitric Oxide 25(3):316–325Google Scholar
  89. 89.
    Yan JL, Zhou J, Ma HP (2015) Pulsed electromagnetic fields promote osteoblast mineralization and maturation needing the existence of primary cilia. Mol Cell Endocrinol 404:132–140Google Scholar
  90. 90.
    Chang K, Chang WH, Wu ML et al (2003) Effects of different intensities of extremely low frequency pulsed electromagnetic fields on formation of osteoclast-like cells. Bioelectromagnetics 24(6):431–439Google Scholar
  91. 91.
    Catalano A, Loddo S, Bellone F (2018) Pulsed electromagnetic fields modulate bone metabolism via RANKL/OPG and Wnt/beta-catenin pathways in women with postmenopausal osteoporosis: a pilot study. Bone 116:42–46Google Scholar
  92. 92.
    Zhu S, He H, Zhang C (2017) Effects of pulsed electromagnetic fields on postmenopausal osteoporosis. Bioelectromagnetics 38(6):406–424Google Scholar
  93. 93.
    Hug K, Roosli M (2012) Therapeutic effects of whole-body devices applying pulsed electromagnetic fields (PEMF): a systematic literature review. Bioelectromagnetics 33(2):95–105Google Scholar
  94. 94.
    Gwechenberger M, Rauscha F, Stix G (2006) Interference of programmed electromagnetic stimulation with pacemakers and automatic implantable cardioverter defibrillators. Bioelectromagnetics 27(5):365–377Google Scholar
  95. 95.
    Ahlbom A, Day N, Feychting M (2000) A pooled analysis of magnetic fields and childhood leukaemia. Br J Cancer 83(5):692–698Google Scholar
  96. 96.
    Kheifets L, Ahlbom A, Crespi CM (2010) Pooled analysis of recent studies on magnetic fields and childhood leukaemia. Br J Cancer 103(7):1128–1135Google Scholar
  97. 97.
    Crocetti S, Beyer C, Schade G (2013) Low intensity and frequency pulsed electromagnetic fields selectively impair breast cancer cell viability. PLoS One 8(9):e72944Google Scholar
  98. 98.
    Lin IL, Chou HL, Lee JC (2014) The antiproliferative effect of C2-ceramide on lung cancer cells through apoptosis by inhibiting Akt and NFkappaB. Cancer Cell Int 14(1):1Google Scholar
  99. 99.
    Morabito C, Guarnieri S, Fano G et al (2010) Effects of acute and chronic low frequency electromagnetic field exposure on PC12 cells during neuronal differentiation. Cell Physiol Biochem 26(6):947–958Google Scholar
  100. 100.
    Kleinerman RA, Linet MS, Hatch EE (2005) Self-reported electrical appliance use and risk of adult brain tumors. Am J Epidemiol 161(2):136–146Google Scholar
  101. 101.
    Abel EL, Hendrix SL, McNeeley GS et al (2007) Use of electric blankets and association with prevalence of endometrial cancer. Eur J Cancer Prev 16(3):243–250Google Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2019

Authors and Affiliations

  • T. Wang
    • 1
    • 2
  • L. Yang
    • 1
    • 2
  • J. Jiang
    • 1
    • 2
  • Y. Liu
    • 3
  • Z. Fan
    • 1
    • 2
  • C. Zhong
    • 1
    • 2
  • C. He
    • 1
    • 2
    Email author
  1. 1.Department of Rehabilitation Medicine, West China HospitalSichuan UniversityChengduPeople’s Republic of China
  2. 2.Key Laboratory of Rehabilitation Medicine, West China HospitalSichuan UniversityChengduPeople’s Republic of China
  3. 3.Department of Ophthalmology, West China HospitalSichuan UniversityChengduChina

Personalised recommendations