Advertisement

Osteoporosis International

, Volume 29, Issue 2, pp 479–487 | Cite as

Defective WNT signaling associates with bone marrow fibrosis—a cross-sectional cohort study in a family with WNT1 osteoporosis

  • R. E. MäkitieEmail author
  • R. Niinimäki
  • S. Kakko
  • T. Honkanen
  • P. E. Kovanen
  • O. Mäkitie
Original Article

Abstract

Summary

This study explores bone marrow function in patients with defective WNT1 signaling. Bone marrow samples showed increased reticulin and altered granulopoiesis while overall hematopoiesis was normal. Findings did not associate with severity of osteoporosis. These observations provide new insight into the role of WNT signaling in bone marrow homeostasis.

Introduction

WNT signaling regulates bone homeostasis and survival and self-renewal of hematopoietic stem cells. Aberrant activation may lead to osteoporosis and bone marrow pathology. We aimed to explore bone marrow findings in a large family with early-onset osteoporosis due to a heterozygous WNT1 mutation.

Methods

We analyzed peripheral blood samples, and bone marrow aspirates and biopsies from 10 subjects with WNT1 mutation p.C218G. One subject was previously diagnosed with idiopathic myelofibrosis and others had no previously diagnosed hematologic disorders. The findings were correlated with the skeletal phenotype, as evaluated by number of peripheral and spinal fractures and bone mineral density.

Results

Peripheral blood samples showed no abnormalities in cell counts, morphology or distributions but mild increase in platelet count. Bone marrow aspirates (from 8/10 subjects) showed mild decrease in bone marrow iron storages in 6 and variation in cell distributions in 5 subjects. Bone marrow biopsies (from 6/10 subjects) showed increased bone marrow reticulin (grade MF-2 in the myelofibrosis subject and grade MF-1 in 4 others), and an increase in overall, and a shift towards early-phase, granulopoiesis. The bone marrow findings did not associate with the severity of skeletal phenotype.

Conclusions

Defective WNT signaling associates with a mild increase in bone marrow reticulin and may predispose to myelofibrosis, while overall hematopoiesis and peripheral blood values are unaltered in individuals with a WNT1 mutation. In this family with WNT1 osteoporosis, bone marrow findings were not related to the severity of osteoporosis.

Keywords

Hematopoiesis Hematopoietic stem cells Myelofibrosis Osteoporosis WNT signaling 

Notes

Acknowledgements

All research protocols were approved by the Research Ethics Board of Helsinki University Hospital, Helsinki, Finland. All study subjects gave their written informed consent before participation.

Funding

This study was financially supported by the Sigrid Jusélius Foundation, the Folkhälsan Research Foundation, the Academy of Finland, the Foundation for Pediatric Research, the Helsinki University Research Funds, the Swedish Research Council, the Novo Nordisk Foundation, the Swedish Childhood Cancer Foundation, Helsinki University and Helsinki University Hospital through the Doctoral Programme in Clinical Research, the Biomedicum Helsinki Foundation, the Finnish Medical Foundation, the Jalmari and Rauha Ahokas Foundation, and through the regional agreement on medical training and clinical research (ALF) between Stockholm County Council and Karolinska Institutet.

Compliance with ethical standards

Conflicts of interest

None.

Supplementary material

198_2017_4309_MOESM1_ESM.pdf (38 kb)
ESM 1 (PDF 38.0 kb).
198_2017_4309_MOESM2_ESM.pdf (41 kb)
ESM 2 (PDF 40.8 kb).
198_2017_4309_MOESM3_ESM.docx (136 kb)
ESM 3 (DOCX 135 kb).

References

  1. 1.
    Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, Wang H, Cundy T, Glorieux FH, Lev D, Zacharin M, Oexle K, Marcelino J, Suwairi W, Heeger S, Sabatakos G, Apte S, Adkins WN, Allgrove J, Arslan-Kirchner M, Batch JA, Beighton P, Black GC, Boles RG, Boon LM, Borrone C, Brunner HG, Carle GF, Dallapiccola B, de Paepe A, Floege B, Halfhide ML, Hall B, Hennekam RC, Hirose T, Jans A, Jüppner H, Kim CA, Keppler-Noreuil K, Kohlschuetter A, LaCombe D, Lambert M, Lemyre E, Letteboer T, Peltonen L, Ramesar RS, Romanengo M, Somer H, Steichen-Gersdorf E, Steinmann B, Sullivan B, Superti-Furga A, Swoboda W, van den Boogaard MJ, van Hul W, Vikkula M, Votruba M, Zabel B, Garcia T, Baron R, Olsen BR, Warman ML, Osteoporosis-Pseudoglioma Syndrome Collaborative Group (2001) Osteoporosis-pseudoglioma syndrome collaborative group. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107(4):513–523.  https://doi.org/10.1016/S0092-8674(01)00571-2 CrossRefPubMedGoogle Scholar
  2. 2.
    Saarinen A, Saukkonen T, Kivelä T, Lahtinen U, Laine C, Somer M, Toiviainen-Salo S, Cole WG, Lehesjoki AE, Mäkitie O (2010) Low density lipoprotein receptor-related protein 5 (LRP5) mutations and osteoporosis, impaired glucose metabolism and hypercholesterolaemia. Clin Endocrinol 72(4):481–488.  https://doi.org/10.1111/j.1365-2265.2009.03680.x CrossRefGoogle Scholar
  3. 3.
    Loots GG, Kneissel M, Keller H, Baptist M, Chang J, Collette NM, Ovcharenko D, Plajzer-Frick I, Rubin EM (2005) Genomic deletion of a long-range bone enhancer misregulates sclerostin in Van Buchem disease. Genome Res 15(7):928–935.  https://doi.org/10.1101/gr.3437105 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Balemans W, Ebeling M, Patel N, van Hul E, Olson P, Dioszegi M, Lacza C, Wuyts W, van den Ende J, Willems P, Paes-Alves AF, Hill S, Bueno M, Ramos FJ, Tacconi P, Dikkers FG, Stratakis C, Lindpaintner K, Vickery B, Foernzler D, van Hul W (2001) Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet 10(5):537–543.  https://doi.org/10.1093/hmg/10.5.537 CrossRefPubMedGoogle Scholar
  5. 5.
    Laine CM, Joeng KS, Campeau PM, Kiviranta R, Tarkkonen K, Grover M, Lu JT, Pekkinen M, Wessman M, Heino TJ, Nieminen-Pihala V, Aronen M, Laine T, Kröger H, Cole WG, Lehesjoki AE, Nevarez L, Krakow D, Curry CJR, Cohn DH, Gibbs RA, Lee BH, Mäkitie O (2013) WNT1 mutations in early-onset osteoporosis and osteogenesis imperfecta. N Engl J Med 368(19):1809–1816.  https://doi.org/10.1056/NEJMoa1215458 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Keupp K, Beleggia F, Kayserili H, Barnes AM, Steiner M, Semler O, Fischer B, Yigit G, Janda CY, Becker J, Breer S, Altunoglu U, Grünhagen J, Krawitz P, Hecht J, Schinke T, Makareeva E, Lausch E, Cankaya T, Caparrós-Martín JA, Lapunzina P, Temtamy S, Aglan M, Zabel B, Eysel P, Koerber F, Leikin S, Garcia KC, Netzer C, Schönau E, Ruiz-Perez VL, Mundlos S, Amling M, Kornak U, Marini J, Wollnik B (2013) Mutations in WNT1 cause different forms of bone fragility. Am J Hum Genet 92(4):565–574.  https://doi.org/10.1016/j.ajhg.2013.02.010 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Mohammed MK, Shao C, Wang J, Wei Q, Wang X, Collier Z, Tang S, Liu H, Zhang F, Huang J, Guo D, Lu M, Liu F, Liu J, Ma C, Shi LL, Athiviraham A, He TC, Lee MJ (2016) Wnt/β-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance. Genes Dis 3(1):11–40.  https://doi.org/10.1016/j.gendis.2015.12.004 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K, Hintz L, Nusse R, Weissman IL (2003) A role for Wnt signaling in self-renewal of hematopoietic stem cells. Nature 423(6938):409–414.  https://doi.org/10.1038/nature01593 CrossRefPubMedGoogle Scholar
  9. 9.
    Austin TW, Solar GP, Ziegler FC, Liem L, Matthews WA (1997) Role for the Wnt gene family in hematopoiesis: expansion of multilineage progenitor cells. Blood 89(10):3624–3635PubMedGoogle Scholar
  10. 10.
    Baba Y, Yokota T, Spits H, Garrett KP, Hayashi S, Kincade PW (2006) Constitutively active beta-catenin promotes expansion of multipotent hematopoietic progenitors in culture. J Immunol 177(4):2294–2303.  https://doi.org/10.4049/jimmunol.177.4.2294 CrossRefPubMedGoogle Scholar
  11. 11.
    Murdoch B, Chadwick K, Martin M, Shojaei F, Shah KV, Gallacher L, Moon RT, Bhatia M (2003) Wnt-5A augments repopulating capacity and primitive hematopoietic development of human blood stem cells in vivo. Proc Natl Acad Sci U S A 100(6):3422–3427.  https://doi.org/10.1073/pnas.0130233100 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kirstetter P, Anderson K, Porse BT, Jacobsen SE, Nerlov C (2006) Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block. Nat Immunol 7(10):1048–1056.  https://doi.org/10.1038/ni1381 CrossRefPubMedGoogle Scholar
  13. 13.
    Lucijanic M, Livun A, Tomasovic-Loncaric C, Stoos-Veic T, Pejsa V, Jaksic O, Prka Z, Kusec R (2016) Canonical Wnt/β-catenin signaling pathway is dysregulated in patients with primary and secondary myelofibrosis. Clin Lymphoma Myeloma Leuk. 16(9):523–526.  https://doi.org/10.1016/j.clml.2016.06.004 CrossRefPubMedGoogle Scholar
  14. 14.
    Jauregui MP, Sanchez SR, Ewton AA, Rice L, Perkins SL, Dunphy CH, Chang CC (2008) The role of beta-catenin in chronic myeloproliferative disorders. Hum Pathol 39(10):1454–1458.  https://doi.org/10.1016/j.humpath.2008.02.007 CrossRefPubMedGoogle Scholar
  15. 15.
    Piersma B, Bank RA, Boersema M (2015) Signaling in fibrosis: TGF-β, WNT, and YAP/TAZ converge. Front Med (Lausanne) 2:59.  https://doi.org/10.3389/fmed.2015.00059 CrossRefGoogle Scholar
  16. 16.
    Mäkitie RE, Haanpää M, Valta H, Pekkinen M, Laine CM, Lehesjoki AE, Schalin-Jäntti C, Mäkitie O (2016) Skeletal characteristics of WNT1 osteoporosis in children and young adults. J Bone Miner Res 31(9):1734–1742.  https://doi.org/10.1002/jbmr.2841 CrossRefPubMedGoogle Scholar
  17. 17.
    Taichman RS (2005) Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood 105(7):2631–2639.  https://doi.org/10.1182/blood-2004-06-2480 CrossRefPubMedGoogle Scholar
  18. 18.
    Mäkitie RE, Niinimäki T, Nieminen MT, Schalin-Jäntti C, Niinimäki J, Mäkitie O (2017) Impaired WNT signaling and the spine-heterozygous WNT1 mutation causes severe age-related spinal pathology. Bone 101:3–9.  https://doi.org/10.1016/j.bone.2017.04.001
  19. 19.
    Lee SH, Erber WN, Porwit A, Tomonaga M, Peterson LC (2008) International Council for Standardization in Hematology. ICSH guidelines for the standardization of bone marrow specimens and reports. Int J Lab Hematol 30(5):349–364.  https://doi.org/10.1111/j.1751-553X.2008.01100.x CrossRefPubMedGoogle Scholar
  20. 20.
    Thiele J, Kvasnicka HM, Facchetti F, Franco V, van der Walt J, Orazi A (2005) European consensus on grading of bone marrow fibrosis and assessment of cellularity. Haematologica 90(8):1128–1132Google Scholar
  21. 21.
    Torlakovic EE, Brynes RK, Hyjek et al (2015) International Council for Standardization in Haematology. ICSH guidelines for the standardization of bone marrow immunohistochemistry. Int J Lab Hematol 37(4):431–449.  https://doi.org/10.1111/ijlh.12365 CrossRefPubMedGoogle Scholar
  22. 22.
    Greer JP, Arber DA, Glader B et al Wintrobe’s clinical hematology, vol 17, 11th edn. Lippincott Williams & Wilkins, Philadelphia, p 2004Google Scholar
  23. 23.
    Yu J, Cao J, Li H, Liu P, Xu S, Zhou R, Yao Z, Guo X (2016) Bone marrow fibrosis with fibrocytic and immunoregulatory responses induced by β-catenin activation in osteoprogenitors. Bone 84:38–46.  https://doi.org/10.1016/j.bone.2015.12.003 CrossRefPubMedGoogle Scholar
  24. 24.
    Geduk A, Atesoglu EB, Tarkun P, Mehtap O, Hacihanefioglu A, Demirsoy ET, Baydemir C (2015) The role of β-catenin in Bcr/Abl negative myeloproliferative neoplasms: an immunohistochemical study. Clin Lymphoma Myeloma Leuk 15(12):785–789.  https://doi.org/10.1016/j.clml.2015.08.084 CrossRefPubMedGoogle Scholar
  25. 25.
    Agarwal A, Morrone K, Bartenstein M, Zhao ZJ, Verma A, Goel S (2016) Bone marrow fibrosis in primary myelofibrosis: pathogenic mechanisms and the role of TGF-β. Stem Cell Investig 3:5.  https://doi.org/10.3978/j.issn.2306-9759.2016.02.03 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Chilosi M, Poletti V, Zamò A, Lestani M, Montagna L, Piccoli P, Pedron S, Bertaso M, Scarpa A, Murer B, Cancellieri A, Maestro R, Semenzato G, Doglioni C (2003) Aberrant Wnt/beta-catenin pathway activation in idiopathic pulmonary fibrosis. Am J Pathol 162(5):1495–1502.  https://doi.org/10.1016/S0002-9440(10)64282-4 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Surendran K, McCaul SP, Simon TCA (2002) Role for Wnt-4 in renal fibrosis. Am J Physiol Renal Physiol 282(3):F431–F441.  https://doi.org/10.1152/ajprenal.0009.2001 CrossRefPubMedGoogle Scholar
  28. 28.
    Tao H, Yang JJ, Shi KH, Li J (2016) Wnt signaling pathway in cardiac fibrosis: new insights and directions. Metabolism 65(2):30–40.  https://doi.org/10.1016/j.metabol.2015.10.013 CrossRefPubMedGoogle Scholar
  29. 29.
    Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, Harris NL, le Beau MM, Hellstrom-Lindberg E, Tefferi A, Bloomfield CD (2009) The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 114(5):937–951.  https://doi.org/10.1182/blood-2009-03-209262 CrossRefPubMedGoogle Scholar
  30. 30.
    Tefferi A (2000) Myelofibrosis with myeloid metaplasia. N Engl J Med 342(17):1255–1265. Review.  https://doi.org/10.1056/NEJM200004273421706 CrossRefPubMedGoogle Scholar
  31. 31.
    Baxter EJ, Scott LM, Campbell PJ et al (2005) Cancer genome project. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365(9464):1054–1061 Erratum in: Lancet 2005;366:122CrossRefGoogle Scholar
  32. 32.
    Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJP, Boggon TJ, Wlodarska I, Clark JJ, Moore S, Adelsperger J, Koo S, Lee JC, Gabriel S, Mercher T, D’Andrea A, Fröhling S, Döhner K, Marynen P, Vandenberghe P, Mesa RA, Tefferi A, Griffin JD, Eck MJ, Sellers WR, Meyerson M, Golub TR, Lee SJ, Gilliland DG (2005) Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7(4):387–397.  https://doi.org/10.1016/j.ccr.2005.03.023 CrossRefPubMedGoogle Scholar
  33. 33.
    Pikman Y, Lee BH, Mercher T et al (2006) MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med e270:3Google Scholar
  34. 34.
    Klampfl T, Gisslinger H, As H et al (2013) Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med 369(25):2379–2390.  https://doi.org/10.1056/NEJMoa1311347 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, Ross J, Haug J, Johnson T, Feng JQ, Harris S, Wiedemann LM, Mishina Y, Li L (2003) Identification of the hematopoietic stem cell niche and control of the niche size. Nature 425(6960):836–841.  https://doi.org/10.1038/nature02041 CrossRefPubMedGoogle Scholar
  36. 36.
    Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, Scadden DT (2003) Osteoblastic cells regulate the hematopoietic stem cell niche. Nature 425(6960):841–846.  https://doi.org/10.1038/nature02040 CrossRefPubMedGoogle Scholar
  37. 37.
    Luis TC, Naber BA, Fibbe WE, van Dongen JJ, Staal FJ (2010) Wnt3a nonredundantly controls hematopoietic stem cell function and its deficiency results in complete absence of canonical Wnt signaling. Blood 116(3):496–497.  https://doi.org/10.1182/blood-2010-04-282624 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Luis TC, Weerkamp F, Naber BA, Baert MR et al (2009) Wnt3a deficiency irreversibly impairs hematopoietic stem cell self-renewal and leads to defects in progenitor cell differentiation. Blood 113(3):546–554.  https://doi.org/10.1182/blood-2008-06-163774 CrossRefPubMedGoogle Scholar
  39. 39.
    Schreck C, Bock F, Grziwok S, Oostendorp RA, Istvánffy R (2014) Regulation of hematopoiesis by activators and inhibitors of Wnt signaling from the niche. Ann N Y Acad Sci 1310(1):32–43.  https://doi.org/10.1111/nyas.12384 CrossRefPubMedGoogle Scholar
  40. 40.
    Cervantes F, López-Guillermo A, Piera C, Pereira A, Aguilar JL, Ordi J, Rozman C (1993) Initial iron deposits in idiopathic myelofibrosis. Analysis of 20 subjects. Sangre (Barc) 38(4):279–282Google Scholar
  41. 41.
    Cervantes F, Rozman C, Piera C, Fernandez MR (1986) Decreased bone marrow iron in chronic granulocytic leukaemia: a consistent finding not reflecting iron deficiency. Blutalkohol 53:305–308Google Scholar
  42. 42.
    Matsushima T, Handa H, Yokohama A, Nagasaki J, Koiso H, Kin Y, Tanaka Y, Sakura T, Tsukamoto N, Karasawa M, Itoh K, Hirabayashi H, Sawamura M, Shinonome S, Shimano S, Miyawaki S, Nojima Y, Murakami H (2003) Prevalence and clinical characteristics of myelodysplastic syndrome with bone marrow eosinophilia or basophilia. Blood 101(9):3386–3390.  https://doi.org/10.1182/blood-2002-03-0947 CrossRefPubMedGoogle Scholar
  43. 43.
    Forrest DL, Horsman DE, Jensen CL, Berry BR, Dalal BI, Barnett MJ, Nantel SH (1998) Myelodysplastic syndrome with hypereosinophilia and a nonrandom chromosomal abnormality dic(1;7): confirmation of eosinophil clonal involvement by fluorescence in situ hybridization. Cancer Genet Cytogenet 107(1):65–68.  https://doi.org/10.1016/S0165-4608(98)00055-7 CrossRefPubMedGoogle Scholar
  44. 44.
    Schwaab J, Jawhar M, Naumann N, Schmitt-Graeff A, Fabarius A, Horny HP, Cross NCP, Hofmann WK, Reiter A, Metzgeroth G (2016) Diagnostic challenges in the work up of hypereosinophilia: pitfalls in bone marrow core biopsy interpretation. Ann Hematol 95(4):557–562.  https://doi.org/10.1007/s00277-016-2598-x CrossRefPubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2017

Authors and Affiliations

  • R. E. Mäkitie
    • 1
    Email author
  • R. Niinimäki
    • 2
  • S. Kakko
    • 3
  • T. Honkanen
    • 4
  • P. E. Kovanen
    • 5
  • O. Mäkitie
    • 1
    • 6
    • 7
  1. 1.Folkhälsan Institute of GeneticsUniversity of HelsinkiHelsinkiFinland
  2. 2.Department of Children and AdolescentsOulu University Hospital and Oulu UniversityOuluFinland
  3. 3.Internal Medicine and Clinical Research CenterUniversity of OuluOuluFinland
  4. 4.Department of HematologyPäijät-Häme Central HospitalLahtiFinland
  5. 5.HUSLAB, Helsinki University Hospital and Department of PathologyUniversity of HelsinkiHelsinkiFinland
  6. 6.Children’s HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
  7. 7.Center for Molecular Medicine, Karolinska Institutet and Clinical GeneticsKarolinska University HospitalStockholmSweden

Personalised recommendations