Advertisement

Osteoporosis International

, Volume 29, Issue 2, pp 459–465 | Cite as

CT-based evaluation of volumetric bone density in fragility fractures of the pelvis—a matched case-control analysis

  • D. Schönenberg
  • R. Guggenberger
  • D. Frey
  • H.-C. Pape
  • H.-P. Simmen
  • G. OsterhoffEmail author
Original Article

Abstract

Summary

This matched case-control study compared the computed tomography (CT)-based regional bone density of patients with fragility fractures of the sacrum to a control without fracture. Patients with a sacral fracture demonstrated a significantly lower regional bone density of the sacrum, the sacral bone density not being correlated with the BMD by DXA of the spine.

Introduction

The aim of this study is to compare the computed tomography-based regional bone density measured by Hounsfield units (HUs) in patients with and without fragility fractures of the sacrum.

Methods

Patients aged ≥ 50 years with a fragility fracture of the sacrum were compared to patients of similar age and gender who had a fall from standing height without fracture (n = 46). A matched case-control analysis was conducted by retrospective chart review and assessment of areal bone mineral density by lumbar DXA and by volumetric regional HU measurements in uncalibrated CT scans of the sacrum.

Results

Patients with a sacral fracture (age 74 ± 11 years) showed a lower bone density in the body of S1 (HU 85 ± 22) when compared to the matched control group without fracture (age 73 ± 10 years, HU 125 ± 37, p < 0.001). The CT-based bone density of S1 did not correlate with the DXA values of the lumbar spine (r = 0.223, p = 0.136), and lumbar spine T-scores did not differ between the groups (− 2.0 ± 1.3 vs. − 1.9 ± 1.2, p = 0.786). All measurements are based on uncalibrated scans, and absolute HU values are restricted to scans made on Siemens SOMATOM Force or SOMATOM Edge scanners.

Conclusions

Patients with fragility fractures of the sacrum demonstrated a lower regional volumetric bone density of the sacrum when compared to a cohort without a fracture. Local sacral volumetric bone density as measured by CT seems to be independent from the areal BMD as measured by DXA of the lumbar spine.

Level of evidence: level III.

Keywords

Computed tomography Dual-energy X-ray absorptiometry Hounsfield units Osteoporosis Pelvic fracture Sacral fracture 

Notes

Compliance with ethical standards

The protocol of the present study was approved by the local ethics committee (Kantonale Ethik-Kommission Zürich, KEK-ZH-Nr. 2016–01758).

Conflicts of interest

None.

Supplementary material

198_2017_4307_MOESM1_ESM.docx (191 kb)
ESM 1 (DOCX 191 kb)

References

  1. 1.
    Wagner D, Kamer L, Sawaguchi T, Richards RG, Noser H, Rommens PM (2016) Sacral bone mass distribution assessed by averaged three-dimensional CT models: implications for pathogenesis and treatment of fragility fractures of the sacrum. J Bone Joint Surg Am 98(7):584–590.  https://doi.org/10.2106/JBJS.15.00726 CrossRefPubMedGoogle Scholar
  2. 2.
    Gauthier A, Kanis JA, Jiang Y, Martin M, Compston JE, Borgstrom F, Cooper C, McCloskey EV (2011) Epidemiological burden of postmenopausal osteoporosis in the UK from 2010 to 2021: estimations from a disease model. Arch Osteoporos 6(1-2):179–188.  https://doi.org/10.1007/s11657-011-0063-y CrossRefPubMedGoogle Scholar
  3. 3.
    Babayev M, Lachmann E, Nagler W (2000) The controversy surrounding sacral insufficiency fractures: to ambulate or not to ambulate? Am J Phys Med Rehabil 79(4):404–409.  https://doi.org/10.1097/00002060-200007000-00014 CrossRefPubMedGoogle Scholar
  4. 4.
    Mears SC, Berry DJ (2011) Outcomes of displaced and nondisplaced pelvic and sacral fractures in elderly adults. J Am Geriatr Soc 59(7):1309–1312.  https://doi.org/10.1111/j.1532-5415.2011.03455.x CrossRefPubMedGoogle Scholar
  5. 5.
    Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17(12):1726–1733.  https://doi.org/10.1007/s00198-006-0172-4 CrossRefPubMedGoogle Scholar
  6. 6.
    Taillandier J, Langue F, Alemanni M, Taillandier-Heriche E (2003) Mortality and functional outcomes of pelvic insufficiency fractures in older patients. Joint Bone Spine 70(4):287–289.  https://doi.org/10.1016/S1297-319X(03)00015-0 CrossRefPubMedGoogle Scholar
  7. 7.
    Schreiber JJ, Anderson PA, Rosas HG, Buchholz AL, AG A (2011) Hounsfield units for assessing bone mineral density and strength: a tool for osteoporosis management. J Bone Joint Surg Am 93(11):1057–1063.  https://doi.org/10.2106/JBJS.J.00160 CrossRefPubMedGoogle Scholar
  8. 8.
    Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312(7041):1254–1259.  https://doi.org/10.1136/bmj.312.7041.1254 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Baum T, Carballido-Gamio J, Huber MB, Müller D, Monetti R, Räth C, Eckstein F, Lochmüller EM, Majumdar S, Rummeny EJ, Link TM, Bauer JS (2010) Automated 3D trabecular bone structure analysis of the proximal femur—prediction of biomechanical strength by CT and DXA. Osteoporos Int 21(9):1553–1564.  https://doi.org/10.1007/s00198-009-1090-z CrossRefPubMedGoogle Scholar
  10. 10.
    Marinova M, Edon B, Wolter K, Katsimbari B, Schild HH, Strunk HM (2015) Use of routine thoracic and abdominal computed tomography scans for assessing bone mineral density and detecting osteoporosis. Curr Med Res Opin 31(10):1871–1881.  https://doi.org/10.1185/03007995.2015.1074892 CrossRefPubMedGoogle Scholar
  11. 11.
    Teo JC, Si-Hoe KM, Keh JE, Teoh SH (2006) Relationship between CT intensity, micro-architecture and mechanical properties of porcine vertebral cancellous bone. Clin Biomech (Bristol, Avon) 21(3):235–244.  https://doi.org/10.1016/j.clinbiomech.2005.11.001 CrossRefGoogle Scholar
  12. 12.
    Salazar D, Lannon S, Pasternak O, Schiff A, Lomasney L, Mitchell E, Stover M (2015) Investigation of bone quality of the first and second sacral segments amongst trauma patients: concerns about iliosacral screw fixation. J Orthop Traumatol 16:301–308CrossRefGoogle Scholar
  13. 13.
    Silva MJ, Keaveny TM, Hayes WC (1998) Computed tomography-based finite element analysis predicts failure loads and fracture patterns for vertebral sections. J Orthop Res 16(3):300–308.  https://doi.org/10.1002/jor.1100160305 CrossRefPubMedGoogle Scholar
  14. 14.
    Rosner B (1995) Fundamentals of biostatistics, 4th edn. Duxbury PressGoogle Scholar
  15. 15.
    Breslow NE, Day NE (1980) Statistical methods in cancer research. Volume I—the analysis of case-control studies. IARC Sci Publ (32):5–338Google Scholar
  16. 16.
    Wagner D, Kamer L, Rommens PM, Sawaguchi T, Richards RG, Noser H (2014) 3D statistical modeling techniques to investigate the anatomy of the sacrum, its bone mass distribution, and the trans-sacral corridors. J Orthop Res 32(11):1543–1548.  https://doi.org/10.1002/jor.22667 CrossRefPubMedGoogle Scholar
  17. 17.
    Peretz AM, Hipp JA, Heggeness MH (1998) The internal bony architecture of the sacrum. Spine (Phila Pa 1976) 23(9):971–974.  https://doi.org/10.1097/00007632-199805010-00001 CrossRefGoogle Scholar
  18. 18.
    Linstrom NJ, Heiserman JE, Kortman KE, Crawford NR, Baek S, Anderson RL, Pitt AM, Karis JP, Ross JS, Lekovic GP, Dean BL (2009) Anatomical and biomechanical analyses of the unique and consistent locations of sacral insufficiency fractures. Spine (Phila Pa 1976) 34(4):309–315.  https://doi.org/10.1097/BRS.0b013e318191ea01 CrossRefGoogle Scholar
  19. 19.
    Alacreu E, Moratal D, Arana E (2017) Opportunistic screening for osteoporosis by routine CT in Southern Europe. Osteoporos Int 28(3):983–990.  https://doi.org/10.1007/s00198-016-3804-3 CrossRefPubMedGoogle Scholar
  20. 20.
    Burke CJ, Didolkar MM, Barnhart HX, Vinson EN (2016) The use of routine non density calibrated clinical computed tomography data as a potentially useful screening tool for identifying patients with osteoporosis. Clin Cases Miner Bone Metab 13(2):135–140.  10.11138/ccmbm/2016.13.2.135 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lee SJ, Binkley N, Lubner MG, Bruce RJ, Ziemlewicz TJ, Pickhardt PJ (2016) Opportunistic screening for osteoporosis using the sagittal reconstruction from routine abdominal CT for combined assessment of vertebral fractures and density. Osteoporos Int 27(3):1131–1136.  https://doi.org/10.1007/s00198-015-3318-4 CrossRefPubMedGoogle Scholar
  22. 22.
    Engelke K (2017) Quantitative computed tomography—current status and new developments. J Clin Densitom 20(3):309–321.  https://doi.org/10.1016/j.jocd.2017.06.017 CrossRefPubMedGoogle Scholar
  23. 23.
    Engelke K, Libanati C, Fuerst T, Zysset P, Genant HK (2013) Advanced CT based in vivo methods for the assessment of bone density, structure, and strength. Curr Osteoporos Rep 11(3):246–255.  https://doi.org/10.1007/s11914-013-0147-2 CrossRefPubMedGoogle Scholar
  24. 24.
    Emohare O, Wiggin M, Hemmati P, Switzer J (2015) Assessing bone mineral density following acute hip fractures: the role of computed tomography attenuation. Geriatr Orthop Surg Rehabil 6(1):16–21.  https://doi.org/10.1177/2151458514560215 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Turkyilmaz I, Aksoy U, McGlumphy EA (2008) Two alternative surgical techniques for enhancing primary implant stability in the posterior maxilla: a clinical study including bone density, insertion torque, and resonance frequency analysis data. Clin Implant Dent Relat Res 10(4):231–237.  https://doi.org/10.1111/j.1708-8208.2008.00084.x CrossRefPubMedGoogle Scholar
  26. 26.
    Turkyilmaz I, Sennerby L, McGlumphy EA, Tozum TF (2009) Biomechanical aspects of primary implant stability: a human cadaver study. Clin Implant Dent Relat Res 11(2):113–119.  https://doi.org/10.1111/j.1708-8208.2008.00097.x CrossRefPubMedGoogle Scholar
  27. 27.
    Turkyilmaz I, Tumer C, Ozbek EN, Tozum TF (2007) Relations between the bone density values from computerized tomography, and implant stability parameters: a clinical study of 230 regular platform implants. J Clin Periodontol 34(8):716–722.  https://doi.org/10.1111/j.1600-051X.2007.01112.x CrossRefPubMedGoogle Scholar
  28. 28.
    Lund T, Oxland TR, Jost B, Cripton P, Grassmann S, Etter C, Nolte LP (1998) Interbody cage stabilisation in the lumbar spine: biomechanical evaluation of cage design, posterior instrumentation and bone density. J Bone Joint Surg Br 80(2):351–359.  https://doi.org/10.1302/0301-620X.80B2.7693 CrossRefPubMedGoogle Scholar
  29. 29.
    Osterhoff G, Dodd AE, Unno F, Wong A, Amiri S, Lefaivre KA, Guy P (2016) Cement augmentation in sacroiliac screw fixation offers modest biomechanical advantages in a cadaver model. Clin Orthop Relat Res 474(11):2522–2530.  https://doi.org/10.1007/s11999-016-4934-9 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Shapurian T, Damoulis PD, Reiser GM, Griffin TJ, Rand WM (2006) Quantitative evaluation of bone density using the Hounsfield index. Int J Oral Maxillofac Implants 21(2):290–297PubMedGoogle Scholar
  31. 31.
    Turkyilmaz I, Ozan O, Yilmaz B, Ersoy AE (2008) Determination of bone quality of 372 implant recipient sites using Hounsfield unit from computerized tomography: a clinical study. Clin Implant Dent Relat Res 10(4):238–244.  https://doi.org/10.1111/j.1708-8208.2008.00085.x CrossRefPubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2017

Authors and Affiliations

  • D. Schönenberg
    • 1
  • R. Guggenberger
    • 2
  • D. Frey
    • 3
  • H.-C. Pape
    • 1
  • H.-P. Simmen
    • 1
  • G. Osterhoff
    • 1
    Email author
  1. 1.Division of Trauma SurgeryUniversity Hospital ZurichZurichSwitzerland
  2. 2.Department of Diagnostic and Interventional RadiologyUniversity Hospital ZurichZurichSwitzerland
  3. 3.Department of RheumatologyUniversity Hospital ZurichZurichSwitzerland

Personalised recommendations