Osteoporosis International

, Volume 29, Issue 2, pp 339–346 | Cite as

Interaction between LRP5 and periostin gene polymorphisms on serum periostin levels and cortical bone microstructure

  • J. PepeEmail author
  • N. Bonnet
  • F. R. Herrmann
  • E. Biver
  • R. Rizzoli
  • T. Chevalley
  • S. L. Ferrari
Original Article



We investigated the interaction between periostin SNPs and the SNPs of the genes assumed to modulate serum periostin levels and bone microstructure in a cohort of postmenopausal women. We identified an interaction between LRP5 SNP rs648438 and periostin SNP rs9547970 on serum periostin levels and on radial cortical porosity.


The purpose of this study is to investigate the interaction between periostin gene polymorphisms (SNPs) and other genes potentially responsible for modulating serum periostin levels and bone microstructure in a cohort of postmenopausal women.


In 648 postmenopausal women from the Geneva Retirees Cohort, we analyzed 6 periostin SNPs and another 149 SNPs in 14 genes, namely BMP2, CTNNB1, ESR1, ESR2, LRP5, LRP6, PTH, SPTBN1, SOST, TGFb1, TNFRSF11A, TNFSF11, TNFRSF11B and WNT16. Volumetric BMD and bone microstructure were measured by high-resolution peripheral quantitative computed tomography at the distal radius and tibia.


Serum periostin levels were associated with radial cortical porosity, including after adjustment for age, BMI, and years since menopause (p = 0.036). Sixteen SNPs in the ESR1, LRP5, TNFRSF11A, SOST, SPTBN1, TNFRSF11B and TNFSF11 genes were associated with serum periostin levels (p range 0.03–0.001) whereas 26 SNPs in 9 genes were associated with cortical porosity at the radius and/or at the tibia. WNT 16 was the gene with the highest number of SNPs associated with both trabecular and cortical microstructure. The periostin SNP rs9547970 was also associated with cortical porosity (p = 0.04). In particular, SNPs in LRP5, ESR1 and near the TNFRSF11A gene were associated with both cortical porosity and serum periostin levels. Eventually, we identified an interaction between LRP5 SNP rs648438 and periostin SNP rs9547970 on serum periostin levels (interaction p = 0.01) and on radial cortical porosity (interaction p = 0.005).


These results suggest that periostin expression is genetically modulated, particularly by polymorphisms in the Wnt pathway, and is thereby implicated in the genetic variation of bone microstructure.


Bone microstructure Heritability LRP5 Periostin SNPs 



This study was supported by the Swiss National Foundation grant to SLF, the Geneva University Hospitals and Faculty of Medicine Clinical Research Center and the Foundation for Research on Aging AETAS.

Compliance with ethical standards

Conflicts of interest


Supplementary material

198_2017_4272_Fig3_ESM.gif (58 kb)
Supplemental Figure 1

(GIF 57 kb)

198_2017_4272_MOESM1_ESM.tif (166 kb)
High resolution image (TIFF 166 kb)
198_2017_4272_MOESM2_ESM.docx (22 kb)
ESM 1 (DOCX 21 kb)
198_2017_4272_MOESM3_ESM.docx (46 kb)
ESM 2 (DOCX 46 kb)


  1. 1.
    Boudin E, Fijalkowski I, Hendrickx G, Van HW (2016) Genetic control of bone mass. Mol Cell Endocrinol 432:3–13CrossRefGoogle Scholar
  2. 2.
    Nagy H, Sornay-Rendu E, Boutroy S, Vilayphiou N, Szulc P, Chapurlat R (2013) Impaired trabecular and cortical microarchitecture in daughters of women with osteoporotic fracture: the MODAM study. Osteoporos Int 24:1881–1889CrossRefGoogle Scholar
  3. 3.
    Bjørnerem Å, Bui M, Wang X, Ghasem-Zadeh A, Hopper JL, Zebaze R, Seeman E (2015) Genetic and environmental variances of bone microarchitecture and bone remodeling markers: a twin study. J Bone Miner Res 30:519–527CrossRefGoogle Scholar
  4. 4.
    Boutroy S, Khosla S, Sornay-Rendu E, Zanchetta MB, McMahon DJ, Zhang CA, Chapurlat RD, Zanchetta J, Stein EM, Bogado C, Majumdar S, Burghardt AJ, Shane E (2016) Microarchitecture and peripheral BMD are impaired in postmenopausal Caucasian women with fracture independently of total hip T-score—an international multicenter study. J Bone Miner Res 31(6):1158–1166CrossRefGoogle Scholar
  5. 5.
    Ralston SH, Crombrugghe B (2006) Genetic regulation of bone mass and susceptibility to osteoporosis. Genes Dev 20:2492–2506CrossRefGoogle Scholar
  6. 6.
    Sims AM, Shephard N, Carter K, Doan T, Dowling A, Duncan EL, Eisman J, Jones G, Nicholson G, Prince R, Seeman E, Thomas G, Wass JA, Brown MA (2008) Genetic analyses in a sample of individuals with high or low BMD shows association with multiple Wnt pathway genes. J Bone Miner Res 23(4):499–506CrossRefGoogle Scholar
  7. 7.
    Mencej-Bedrac S, Prezelj J, Kocjan T, Komadina R, Marc J (2009) Analysis of association of LRP5, LRP6, SOST, DKK1, and CTNNB1 genes with bone mineral density in a Slovenian population. Calcif Tissue Int 85(6):501–506CrossRefGoogle Scholar
  8. 8.
    Koller DL, Zheng HF, Karasik D et al (2013) Meta-analysis of genome-wide studies identifiesWNT16 and ESR1 SNPs associated with bone mineral density in premenopausal women. J Bone Miner Res 28:547–558CrossRefGoogle Scholar
  9. 9.
    Tu P, Duan P, Zhang RS, DB X, Wang Y, HP W, Liu YH, Si L (2015) Polymorphisms in genes in the RANKL/RANK/OPG pathway are associated with bone mineral density at different skeletal sites in post-menopausal women. Osteoporos Int 26(1):179–185CrossRefGoogle Scholar
  10. 10.
    Tural S, Alayli G, Kara N, Tander B, Bilgici A, Kuru O (2013) Association between osteoporosis and polymorphisms of the IL-10 and TGF-beta genes in Turkish postmenopausal women. Hum Immunol 74(9):1179–1183CrossRefGoogle Scholar
  11. 11.
    Bonnet N, Biver E, Durosier C, Chevalley T, Rizzoli R, Ferrari S (2015) Additive genetic effects on circulating periostin contribute to the heritability of bone microstructure. J Clin Endocrinol Metab 100(7):E1014–E1021CrossRefGoogle Scholar
  12. 12.
    Rousseau JC, Sornay-Rendu E, Bertholon C, Chapurlat R, Garnero P (2014) Serum periostin is associated with fracture risk in postmenopausal women: a 7-year prospective analysis of the OFELY study. J Clin Endocrinol Metab 99(7):2533–2539CrossRefGoogle Scholar
  13. 13.
    Xiao SM, Gao Y, Cheung CL, Bow CH, Lau KS, Sham PC, Tan KC, Kung AW (2012) Association of CDX1 binding site of periostin gene with bone mineral density and vertebral fracture risk. Osteoporos Int 23(7):1877–1887CrossRefGoogle Scholar
  14. 14.
    Bonnet N, Garnero P, Ferrari S (2016) Periostin action in bone. Mol Cell Endocrinol 432:75–82CrossRefGoogle Scholar
  15. 15.
    Bonnet N, Conway SJ, Ferrari SL (2012) Regulation of beta catenin signaling and parathyroid hormone anabolic effects in bone by the matricellular protein periostin. Proc Natl Acad Sci U S A 109(37):15048–15053CrossRefGoogle Scholar
  16. 16.
    Hasegawa D, Wada N, Maeda H, Yoshida S, Mitarai H, Tomokiyo A, Monnouchi S, Hamano S, Yuda A, Akamine A (2015) Wnt5a induces collagen production by human periodontal ligament cells through TGFβ1-mediated upregulation of periostin expression. J Cell Physiol 230(11):2647–2660CrossRefGoogle Scholar
  17. 17.
    Biver E, Durosier C, Chevalley T, Herrmann FR, Ferrari S, Rizzoli R (2015) Prior ankle fractures in postmenopausal women are associated with low areal bone mineral density and bone microstructure alterations. Osteoporos Int 26(8):2147–2155CrossRefGoogle Scholar
  18. 18.
    Durosier C, van Lierop A, Ferrari S, Chevalley T, Papapoulos S, Rizzoli R (2013) Association of circulating sclerostin with bone mineral mass, microstructure, and turnover biochemical markers in healthy elderly men and women. J Clin Endocrinol Metab 98(9):3873–3883CrossRefGoogle Scholar
  19. 19.
    Durosier-Izart C, Biver E, Merminod F, van Rietbergen B, Chevalley T, Herrmann FR, Ferrari SL, Rizzoli R (2017) Peripheral skeleton bone strength is positively correlated with total and dairy protein intakes in healthy postmenopausal women. Am J Clin Nutr 105(2):513–525CrossRefGoogle Scholar
  20. 20.
    Nishiyama KK, Macdonald HM, Buie HR, Hanley DA, Boyd SK (2010) Postmenopausal women with osteopenia have higher cortical porosity and thinner cortices at the distal radius and tibia than women with normal aBMD: an in vivo HR-pQCT study. J Bone Miner Res 25:882–890PubMedGoogle Scholar
  21. 21.
    Cleves MA (2005) Exploratory analysis of single nucleotide polymorphism (SNP) for quantitative traits. Stata J 2:141–153CrossRefGoogle Scholar
  22. 22.
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol 57:289–300Google Scholar
  23. 23.
    VanderWeele TJ, Knol MJ (2014) A tutorial on interaction. Epidemiol Methods 3:3–72Google Scholar
  24. 24.
    Movérare-Skrtic S, Henning P, Liu X et al (2014) Osteoblast-derived WNT16 represses osteoclastogenesis and prevents cortical bone fragility fractures. Nat Med 20:1279–1288CrossRefGoogle Scholar
  25. 25.
    Zheng HF, Tobias JH, Duncan E et al (2012) WNT16 influences bone mineral density, cortical bone thickness, bone strength, and osteoporotic fracture risk. PLoS Genet 8:e1002745CrossRefGoogle Scholar
  26. 26.
    Zupan J, Mencej-Bedrac S, Jurković-Mlakar S, Prezelj J, Marc J (2010) Gene-gene interactions in RANK/RANKL/OPG system influence bone mineral density in postmenopausal women. J Steroid Biochem Mol Biol 118(1–2):102–106CrossRefGoogle Scholar
  27. 27.
    Luo L, Xia W, Nie M, Sun Y, Jiang Y, Zhao J, He S, Xu L (2014) Association of ESR1 and C6orf97 gene polymorphism with osteoporosis in postmenopausal women. Mol Biol Rep 41(5):3235–3243CrossRefGoogle Scholar
  28. 28.
    VanMeurs JB, Trikalinos TA, Ralston SH et al (2008) Large-scale analysis of association between LRP5 and LRP6 variants and osteoporosis. JAMA 299(11):1277–1290CrossRefGoogle Scholar
  29. 29.
    Paternoster L, Lorentzon M, Lehtimäki T, Eriksson J, Kähönen M, Raitakari O, Laaksonen M, Sievänen H, Viikari J, Lyytikäinen LP, Mellström D, Karlsson M, Ljunggren O, Grundberg E, Kemp JP, Sayers A, Nethander M, Evans DM, Vandenput L, Tobias JH, Ohlsson C (2013) Genetic determinants of trabecular and cortical volumetric bone mineral densities and bone microstructure. PLoS Genet 9(2):e1003247CrossRefGoogle Scholar
  30. 30.
    Mamalis A, Markopoulou C, Lagou A, Vrotsos I (2011) Oestrogen regulates proliferation, osteoblastic differentiation, collagen synthesis and periostin gene expression in human periodontal ligament cells through oestrogen receptor beta. Arch Oral Biol 56(5):446–455CrossRefGoogle Scholar
  31. 31.
    Yi J, Cai Y, Yao Z, Lin J (2013) Genetic analysis of the relationship between bone mineral density and low-density lipoprotein receptor-related protein 5 gene polymorphisms. PLoS One 8(12):e85052CrossRefGoogle Scholar
  32. 32.
    Ferrari SL, Deutsch S, Choudhury U, Chevalley T, Bonjour JP, Dermitzakis ET, Rizzoli R, Antonarakis SE (2004) Polymorphisms in the low-density lipoprotein receptor-related protein 5 (LRP5) gene are associated with variation in vertebral bone mass, vertebral bone size, and stature in whites. Am J Hum Genet 74(5):866–875CrossRefGoogle Scholar
  33. 33.
    Kobayashi Y, Uehara S, Udagawa N, Takahashi N (2016) Regulation of bone metabolism by Wnt signals. J Biochem 159(4):387–392CrossRefGoogle Scholar
  34. 34.
    Lauretani F, Cepollaro C, Bandinelli S, Cherubini A, Gozzini A, Masi L, Falchetti A, Del Monte F, Carbonell-Sala S, Marini F, Tanini A, Corsi AM, Ceda GP, Brandi ML, Ferrucci L (2010) LRP5 gene polymorphism and cortical bone. Aging Clin Exp Res 22(4):281–288CrossRefGoogle Scholar
  35. 35.
    Bonnet N, Biver E, Chevalley T, Rizzoli R, Garnero P, Ferrari SL. (2017) Serum levels of a cathepsin-K generated periostin fragment predict incident low-trauma fractures in postmenopausal women independently of BMD and FRAX. J Bone Miner Res [Epub ahead of print]Google Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2017

Authors and Affiliations

  • J. Pepe
    • 1
    • 2
    Email author
  • N. Bonnet
    • 1
  • F. R. Herrmann
    • 3
  • E. Biver
    • 1
  • R. Rizzoli
    • 1
  • T. Chevalley
    • 1
  • S. L. Ferrari
    • 1
  1. 1.Division of Bone Diseases, Faculty of MedicineGeneva University HospitalsGenevaSwitzerland
  2. 2.Department of Internal Medicine and Medical Disciplines“Sapienza” University of RomeRomeItaly
  3. 3.Division of Geriatrics, Department of Internal Medicine, Rehabilitation and Geriatrics, Geneva University HospitalsUniversity of GenevaGenevaSwitzerland

Personalised recommendations