Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Measurement and numerical simulation of shock standoff distances over hypersonic spheres in CO2 in a ballistic range

Abstract

To gather test data of the nonequilibrium flow in CO2 and investigate the influence of the two-temperature nonequilibrium model on numerical simulations, measurements of shock standoff distances over hypersonic spheres in CO2 have been taken in the hypervelocity ballistic ranges of the Hypervelocity Aerodynamics Institute, China Aerodynamics Research and Development Center. Corresponding numerical simulations using the two-temperature model were also performed. The measurements were made for spheres with diameters of 10 mm and 20 mm, flight velocities between 2.122 and 4.220 km/s, and ambient pressures between 2.42 and 14.74 kPa. Test flow fields were visualized by the shadowgraphy for the measurement of shock standoff distances. The shock standoff distances generally decrease as ρR (freestream density × radius of the model, namely the binary scaling parameter) increases. The flow is mainly nonequilibrium when ρR is of the order of 10−4 kg/m2, and the two-temperature nonequilibrium model is applicable for the calculation of the flow field under such conditions. When ρR increases to the order of 10−3 kg/m2, the flow approaches the equilibrium state.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Stetson, D.: The Mars exploration roadmap: status report. AIAA Space Exploration Conference (2005)

  2. 2.

    Braun, R.D., Manning, R.M.: Mars exploration entry, descent, and landing challenges. J. Spacecr. Rockets 44(2), 310–323 (2007). https://doi.org/10.2514/1.25116

  3. 3.

    Tolson, R.H., Lugo, R.A., Baird, D.T., Cianciolo, A.D., Bougher, S.W., Zurek, R.M.: Atmospheric Modeling Using Accelerometer Data During Mars Atmosphere and Volatile Evolution (MAVEN) Flight Operations, AAS 17-273 (2017)

  4. 4.

    Nonaka, S., Mizuno, H., Takayama, K., Park, C.: Measurement of shock standoff distance for sphere in ballistic range. J. Thermophys. Heat Transf. 14(2), 225–229 (2000). https://doi.org/10.2514/2.6512

  5. 5.

    Liu, J., Le, J.L., Yang, H.: Numerical simulation of hypersonic flowfield around sphere model and experimental verification. Exp. Meas. Fluid Mech. 16(1), 67–79 (2002). https://doi.org/10.3969/j.issn.1672-9897.2002.01.011

  6. 6.

    Zander, F., Gollan, R.J., Jacobs, P.A., Morgan, R.: Hypervelocity shock standoff on spheres in air. Shock Waves 24(2), 171–178 (2014). https://doi.org/10.1007/s00193-013-0488-x

  7. 7.

    MacLean, M., Holden, M.: Catalytic effects on heat transfer measurements for aerothermal studies with CO2. 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA Paper 2006-0182 (2006). https://doi.org/10.2514/6.2006-182

  8. 8.

    Doraiswamy, S., Kelley, D., Candler, V.G.: Vibrational modeling of CO2 in high-enthalpy nozzle flow. J. Thermophys. Heat Transf. 24(1), 9–17 (2010). https://doi.org/10.2514/1.43280

  9. 9.

    MacLean, M., Dufrene, A., Holden, M.: Spherical capsule heating in high enthalpy carbon dioxide in LENS-XX expansion tunnel. 51st AIAA Aerospace Science Meeting Including the New Horizons Forum and Aerospace Exposition, Grapevine (Dallas/Ft. Worth Region), TX, AIAA Paper 2013-0906 (2013). https://doi.org/10.2514/6.2013-906

  10. 10.

    Sharma, S.P., Park, C.: Survey of simulation and diagnostic techniques for hypersonic nonequilibrium flows. J. Thermophys. Heat Transf. 4(2), 129–142 (1990). https://doi.org/10.2514/3.155

  11. 11.

    Park, C.: Assessment of two-temperature kinetic model for dissociating and weakly-ionizing nitrogen. J. Thermophys. Heat Transf. 2(1), 8–16 (1988). https://doi.org/10.2514/3.55

  12. 12.

    Kay, R.D., Netterfield, M.P.: Thermochemical non-equilibrium computations for a Mars entry vehicle. 28th Thermophysics Conference, Orlando, FL, AIAA Paper 93-2841 (1993). https://doi.org/10.2514/6.1993-2841

  13. 13.

    Suzuki, K., Abe, T.: Thermochemical nonequilibrium viscous shock-layer analysis for a Mars aerocapture vehicle. J. Thermophys. Heat Transf. 8(4), 773–780 (1994). https://doi.org/10.2514/3.611

  14. 14.

    Furudate, M., Suzuki, T., Takayanagi, H., Fujita, K.: Three-dimensional aerodynamics study for Mars aeroshell in nonequilibrium flow. 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, Chicago, IL, AIAA Paper 2010-4647 (2010). https://doi.org/10.2514/6.2010-4647

  15. 15.

    Liu, S., Wang, Z.H., Xie, A.M., Huang, J.: Shadowgraph imaging and post-processing for hypersonic boundary layer transition in ballistic range. 13th Asian Symposium of Visualization (2015)

  16. 16.

    Schoenenberger, M., Dyakonov. A., Buning, P., Scallion, W., Norman. J.V.: Aerodynamic challenges for the Mars Science Laboratory entry, descent and landing. 41st AIAA Thermophysics Conference, San Antonio, TX, AIAA Paper 2009-3914 (2009). https://doi.org/10.2514/6.2009-3914

  17. 17.

    Park, C., Howe, J., Jaffe, R., Candler, G.V.: Review of chemical-kinetic problems of future NASA missions, II: Mars entries. J. Thermophys. Heat Transf. 8(1), 9–23 (1994). https://doi.org/10.2514/3.496

  18. 18.

    Park, C.: Assessment of two-temperature kinetic model for ionizing air. J. Thermophys. Heat Transf. 3(3), 233–244 (1989). https://doi.org/10.2514/3.28771

  19. 19.

    Furudate, M., Nonaka, S., Sawada, K.: Behavior of two-temperature model in intermediate hypersonic regime. J. Thermophys. Heat Transf. 13(4), 424–430 (1999). https://doi.org/10.2514/2.6480

  20. 20.

    Grinstead, J.H., Wilder, M.C., Wright, M.J., Bogdanoff, D.W., Allen, G.A., Dang, K., Forrest, M.J.: Shock radiation measurements for Mars aerocapture radiative heating analysis. 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA Paper 2008-1272 (2008). https://doi.org/10.2514/6.2008-1272

Download references

Acknowledgements

The authors would like to express sincere thanks to Andrew Higgins for his valuable comments and suggestions. Special thanks are also given to the personnel who have participated in the tests.

Author information

Correspondence to D. Liao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by A. Higgins.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liao, D., Liu, S., Huang, J. et al. Measurement and numerical simulation of shock standoff distances over hypersonic spheres in CO2 in a ballistic range. Shock Waves 30, 131–138 (2020). https://doi.org/10.1007/s00193-019-00923-1

Download citation

Keywords

  • Nonequilibrium
  • Shock standoff distance
  • Ballistic range experiment
  • Two-temperature model
  • CO2