Advertisement

Shock Waves

pp 1–14 | Cite as

The influence of the number of shock waves and the energy flux density on the Raman spectrum of collagen type I from rat

  • J. J. Cárcamo-VegaEmail author
  • M. R. Brañes
  • A. M. LoskeEmail author
  • M. M. Campos-Vallette
Original Article
  • 29 Downloads

Abstract

Shock waves are used to treat musculoskeletal injuries and trigger the body’s mechanisms to initiate healing; however, the cellular and molecular working mechanisms are not fully known. Raman spectroscopy may be a useful tool to provide information on structural changes. Solid collagen type I from rat tail (> 90% pure) was suspended in water and was exposed in vitro to different numbers of shock waves and energy flux densities. Raman spectra were recorded at 2 h, 1 week, and 3 weeks after shock-wave treatment. The spectral analysis indicated that varying the number of shock waves and the energy flux density induced molecular changes in the collagen structure. Varying the energy flux density induced more significant changes than modifying the number of shock waves; however, in most cases, the collagen recovered its original conformation 3 weeks after treatment. A significant decrease in the relative intensities of the conformational bands, which include amide I, amide III, and stretching C–C, was observed at different energy flux densities. In many clinical cases, the natural repair of tissue is improved after shock-wave treatment. Raman spectroscopy revealed that varying the energy flux density of the shock waves applied to rat collagen type I induced strong conformational molecular changes. Approximately 2–3 weeks after shock-wave treatment, a phase of “molecular ordering” tending to a “recovering molecular sequence repair” was observed.

Keywords

Extracorporeal shock-wave therapy Collagen type I Raman spectroscopy Energy flux density Musculoskeletal injuries Shock-wave-induced mechanotransduction 

Notes

Acknowledgements

Ricardo Aroca and Francisco Fernández are acknowledged for revision of the manuscript. This work was financially supported by the “Fondo Nacional de Desarrollo Científico y Tecnológico” (FONDECYT) of Chile (Project No. 11140262).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict interest.

References

  1. 1.
    Wess, O.: Physics and technology of shock wave and pressure wave therapy. 9th International Congress of the International Society for Musculoskeletal Shockwave Therapy (ISMST), News Letter, ISMST, vol. 2, pp. 2–12 (2006)Google Scholar
  2. 2.
    Cleveland, R.O., McAteer, J.A.: The physics of shock-wave lithotripsy. In: Smith, A.D., Badlani, G.H., Preminger, G.M., Kavoussi, L.R. (eds.) Smith’s Textbook of Endourology, pp. 529–558. Wiley, Chichester (2012).  https://doi.org/10.1002/9781444345148.ch49 Google Scholar
  3. 3.
    Loske, A.M.: Medical and Biomedical Applications of Shock Waves. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-47570-7 CrossRefGoogle Scholar
  4. 4.
    Brañes, J., Contreras, H., Cabello, P., Antonic, V., Guiloff, L., Brañes, M.: Shoulder rotator cuff responses to extracorporeal shockwave therapy: morphological and immunohistochemical analysis. Shoulder Elbow 4, 163–168 (2012).  https://doi.org/10.1111/j.1758-5740.2012.00178.x CrossRefGoogle Scholar
  5. 5.
    Sandoval, C., Valenzuela, A., Rojas, C., Brañes, M., Guiloff, L.: Extracorporeal shockwave therapy for atrophic and oligotrophic nonunion of tibia and femur in high energy trauma patients. Case series. Int. J. Surg. Open 9, 36–40 (2017).  https://doi.org/10.1016/j.ijso.2017.09.002 CrossRefGoogle Scholar
  6. 6.
    Wang, C., Wang, F., Yang, K.: Biological mechanism of musculoskeletal shock waves. Int. Soc. Musculoskelet. Shockwave Ther. News 1, 5–11 (2004)Google Scholar
  7. 7.
    Wang, C.-J., Chen, H.-S., Chen, C.-E., Yang, K.D.: Treatment of nonunions of long bone fractures with shock waves. Clin. Orthop. Relat. Res. 387, 95–101 (2001).  https://doi.org/10.1097/00003086-200106000-00013 CrossRefGoogle Scholar
  8. 8.
    Wang, C.-J., Huang, H.-Y., Chen, H.-H., Pai, C.-H., Yang, K.D.: Effect of shock wave therapy on acute fractures of the tibia: A study in a dog model. Clin. Orthop. Relat. Res. 387, 112–118 (2001).  https://doi.org/10.1097/00003086-200106000-00015 CrossRefGoogle Scholar
  9. 9.
    Cárcamo, J.J., Aliaga, A.E., Clavijo, E., Brañes, M., Campos-Vallette, M.M.: Raman and surface-enhanced Raman scattering in the study of human rotator cuff tissues after shock wave treatment. J. Raman Spectrosc. 43, 248–254 (2012).  https://doi.org/10.1002/jrs.3019 CrossRefGoogle Scholar
  10. 10.
    Albert, J.-D., Meadeb, J., Guggenbuhl, P., Marin, F., Benkalfate, T., Thomazeau, H., Chalès, G.: High-energy extracorporeal shock-wave therapy for calcifying tendinitis of the rotator cuff: a randomised trial. J. Bone Joint Surg. Br. 89, 335–341 (2007).  https://doi.org/10.1302/0301-620X.89B3.18249 CrossRefGoogle Scholar
  11. 11.
    Daecke, W., Kusnierczak, D., Loew, M.: Long-term effects of extracorporeal shockwave therapy in chronic calcific tendinitis of the shoulder. J. Shoulder Elb. Surg. 11, 476–480 (2002).  https://doi.org/10.1067/mse.2002.126614 CrossRefGoogle Scholar
  12. 12.
    Furia, J.P.: High-energy extracorporeal shock wave therapy as a treatment for insertional Achilles tendinopathy. Am. J. Sports Med. 34, 733–740 (2006).  https://doi.org/10.1177/0363546505281810 CrossRefGoogle Scholar
  13. 13.
    Ji, H.M., Kim, H.J., Han, S.J.: Extracorporeal shock wave therapy in myofascial pain syndrome of upper trapezius. Ann. Rehabil. Med. 36, 675–680 (2012).  https://doi.org/10.5535/arm.2012.36.5.675 CrossRefGoogle Scholar
  14. 14.
    Yalcin, E., Keskin Akca, A., Selcuk, B., Kurtaran, A., Akyuz, M.: Effects of extracorporeal shock wave therapy on symptomatic heel spurs: a correlation between clinical outcome and radiologic changes. Rheumatol. Int. 32, 343–347 (2012).  https://doi.org/10.1007/s00296-010-1622-z CrossRefGoogle Scholar
  15. 15.
    Schaden, W., Thiele, R., Kölpl, C., Pusch, A.: Extracorporeal shock wave therapy (ESWT) in skin lesions. Int. Soc. Musculoskelet. Shockwave Ther. News 2, 13–14 (2006)Google Scholar
  16. 16.
    Weil Jr., L.S., Roukis, T.S., Weil Sr., L.S., Borrelli, A.H.: Extracorporeal shock wave therapy for the treatment of chronic plantar fasciitis: Indications, protocol, intermediate results, and a comparison of results to fasciotomy. J. Foot Ankle Surg. 41, 166–172 (2002).  https://doi.org/10.1016/S1067-2516(02)80066-7 CrossRefGoogle Scholar
  17. 17.
    Cheing, G.L., Chang, H.: Extracorporeal shock wave therapy. J. Orthop. Sports Phys. 33, 337–343 (2003).  https://doi.org/10.2519/jospt.2003.33.6.337 CrossRefGoogle Scholar
  18. 18.
    Lin, S.-Y., Li, M.-J., Cheng, W.-T.: FT-IR and Raman vibrational microspectroscopies used for spectral biodiagnosis of human tissues. J. Spectrosc. 21, 1–30 (2007).  https://doi.org/10.1155/2007/278765 CrossRefGoogle Scholar
  19. 19.
    Bonifacio, A., Sergo, V.: Effects of sample orientation in Raman microspectroscopy of collagen fibers and their impact on the interpretation of the amide III band. Vib. Spectrosc. 53, 314–317 (2010).  https://doi.org/10.1016/j.vibspec.2010.04.004 CrossRefGoogle Scholar
  20. 20.
    Janko, M., Davydovskaya, P., Bauer, M., Zink, A., Stark, R.W.: Anisotropic Raman scattering in collagen bundles. Opt. Lett. 35, 2765–2767 (2010).  https://doi.org/10.1364/OL.35.002765 CrossRefGoogle Scholar
  21. 21.
    Frushour, B.G., Koenig, J.L.: Raman scattering of collagen, gelatin, and elastin. Biopolymers 14, 379–391 (1975).  https://doi.org/10.1002/bip.1975.360140211 CrossRefGoogle Scholar
  22. 22.
    Campos-Vallette, M.M., Rey-Lafon, M.: Vibrational spectra and rotational isomerism in short chain n-perfluoroalkanes. J. Mol. Struct. 101, 23–45 (1983).  https://doi.org/10.1016/0022-2860(83)85041-8 CrossRefGoogle Scholar
  23. 23.
    Spiro, T.G., Gaber, B.P.: Laser Raman scattering as a probe of protein structure. Ann. Rev. Biochem. 46, 553–572 (1977).  https://doi.org/10.1146/annurev.bi.46.070177.003005 CrossRefGoogle Scholar
  24. 24.
    Tu, A.T.: Laser Raman scattering as a probe of protein structure. In: Clark, R.J.H., Hester, R.E. (eds.) Advances in Infrared and Raman Spectroscopy, vol. 13, pp. 47–112. Wiley, London (1986)Google Scholar
  25. 25.
    Fratzl, P.: Collagen: Structure and mechanics, an introduction. In: Fratzl, P. (ed.) Collagen: Structure and Mechanics, pp. 1–13. Springer, Boston (2008).  https://doi.org/10.1007/978-0-387-73906-9_1 CrossRefGoogle Scholar
  26. 26.
    Shoulders, M.D., Raines, R.T.: Collagen structure and stability. Ann. Rev. Biochem. 78, 929–958 (2009).  https://doi.org/10.1146/annurev.biochem.77.032207.120833 CrossRefGoogle Scholar
  27. 27.
    Brinckmann, J.: Collagens at a glance. In: Brinckmann, J., Notbohm, H., Mueller, P.K. (eds.) Collagen: Primer in Structure, Processing and Assembly. Topics in Current Chemistry, vol. 247, pp. 1–6. Springer, Heidelberg (2005).  https://doi.org/10.1007/b103817 CrossRefGoogle Scholar
  28. 28.
    Bank, R.A., TeKoppele, J.M., Oostingh, G., Hazleman, B.L., Riley, G.P.: Lysylhydroxylation and non-reducible crosslinking of human supraspinatus tendon collagen: changes with age and in chronic rotator cuff tendinitis. Ann. Rheum. Dis. 58, 35–41 (1999).  https://doi.org/10.1136/ard.58.1.35 CrossRefGoogle Scholar
  29. 29.
    Bernard, C.: Tejido conectivo. In: Geneser, F. (ed.) Histología, Sobre Bases Moleculares, pp. 197–225. Editorial Médica Panamericana, Madrid (2000)Google Scholar
  30. 30.
    Aragno, I., Odetti, P., Altamura, F., Cavalleri, O., Rolandi, R.: Structure of rat tail tendon collagen examined by atomic force microscope. Experientia 51, 1063–1067 (1995).  https://doi.org/10.1007/BF01946917 CrossRefGoogle Scholar
  31. 31.
    Revenko, I., Sommer, F., Minh, D.T., Garrone, R., Franc, J.-M.: Atomic force microscopy study of the collagen fibre structure. Biol. Cell 80, 67–69 (1994).  https://doi.org/10.1016/0248-4900(94)90019-1 CrossRefGoogle Scholar
  32. 32.
    Taatjes, D.J., Quinn, A.S., Bovill, E.G.: Imaging of collagen type III in fluid by atomic force microscopy. Microsc. Res. Tech. 44, 347–352 (1999).  https://doi.org/10.1002/(SICI)1097-0029(19990301)44:5%3C347::AID-JEMT5%3E3.0.CO;2-2 CrossRefGoogle Scholar
  33. 33.
    Gullekson, C., Lucas, L., Hewitt, K., Kreplak, L.: Surface-sensitive Raman spectroscopy of collagen I fibrils. Biophys. J. 100, 1837–1845 (2011).  https://doi.org/10.1016/j.bpj.2011.02.026 CrossRefGoogle Scholar
  34. 34.
    Cárcamo, J.J., Aliaga, A.E., Clavijo, R.E., Brañes, M.R., Campos-Vallette, M.M.: Raman study of the shock wave effect on collagens. Spectrochim. Acta A 86, 360–365 (2012).  https://doi.org/10.1016/j.saa.2011.10.049 CrossRefGoogle Scholar
  35. 35.
    Perez, C., Chen, H., Matula, T.J., Karzova, M., Khokhlova, V.A.: Acoustic field characterization of the Duolith: Measurements and modeling of a clinical shock wave therapy device. J. Acoust. Soc. Am. 134, 1663–1674 (2013).  https://doi.org/10.1121/1.4812885 CrossRefGoogle Scholar
  36. 36.
    Aliaga, A.E., Osorio-Román, I., Leyton, P., Garrido, C., Cárcamo, J., Caniulef, C., Célis, F., Díaz, F.G., Clavijo, E., Gómez-Jeria, J.S., Campos-Vallette, M.M.: Surface-enhanced Raman scattering study of l-tryptophan. J. Raman Spectrosc. 40, 164–169 (2009).  https://doi.org/10.1002/jrs.2099 CrossRefGoogle Scholar
  37. 37.
    Aliaga, A.E., Osorio-Roman, I., Garrido, C., Leyton, P., Cárcamo, J., Clavijo, E., Gómez-Jeria, J.S., Díaz, F.G., Campos-Vallette, M.M.: Surface enhanced Raman scattering study of l-lysine. Vib. Spectrosc. 50, 131–135 (2009).  https://doi.org/10.1016/j.vibspec.2008.09.018 CrossRefGoogle Scholar
  38. 38.
    Diaz Fleming, G., Finnerty, J.J., Campos-Vallette, M., Célis, F., Aliaga, A.E., Fredes, C., Koch, R.: Experimental and theoretical Raman and surface-enhanced Raman scattering study of cysteine. J. Raman Spectrosc. 40, 632–638 (2009).  https://doi.org/10.1002/jrs.2175 CrossRefGoogle Scholar
  39. 39.
    Cárcamo, J.J., Aliaga, A.E., Clavijo, E., Garrido, C., Gómez-Jeria, J.S., Campos-Vallette, M.M.: Proline and hydroxyproline deposited on silver nanoparticles. A Raman, SERS and theoretical study. J. Raman Spectrosc. 43, 750–755 (2012).  https://doi.org/10.1002/jrs.3092 CrossRefGoogle Scholar
  40. 40.
    De Gelder, J., De Gussem, K., Vandenabeele, P., Moens, L.: Reference database of Raman spectra of biological molecules. J. Raman Spectrosc. 38, 1133–1147 (2007).  https://doi.org/10.1002/jrs.1734 CrossRefGoogle Scholar
  41. 41.
    Xu, J., Stangel, I., Butler, I.S., Gilson, D.F.R.: An FT-Raman spectroscopic investigation of dentin and collagen surfaces modified by 2-hydroxyethylmethacrylate. J. Dent. Res. 76, 596–601 (1997).  https://doi.org/10.1177/00220345970760011101 CrossRefGoogle Scholar
  42. 42.
    Lyng, F.M., Faoláin, E.Ó., Conroy, J., Meade, A.D., Knief, P., Duffy, B., Hunter, M.B., Byrne, J.M., Kelehan, P., Byrne, H.J.: Vibrational spectroscopy for cervical cancer pathology, from biochemical analysis to diagnostic tool. Exp. Mol. Pathol. 82, 121–129 (2007).  https://doi.org/10.1016/j.yexmp.2007.01.001 CrossRefGoogle Scholar
  43. 43.
    Cheng, W.T., Liu, M.T., Liu, H.N., Lin, S.Y.: Micro-Raman spectroscopy used to identify and grade human skin pilomatrixoma. Microsc. Res. Tech. 68, 75–79 (2005).  https://doi.org/10.1002/jemt.20229 CrossRefGoogle Scholar
  44. 44.
    Herlinger, A.W., Long, T.V.: Laser-Raman and infrared spectra of amino acids and their metal complexes. III. Proline and bisprolinato complexes. J. Am. Chem. Soc. 92, 6481–6486 (1970).  https://doi.org/10.1021/ja00725a016 CrossRefGoogle Scholar
  45. 45.
    Wolpert, M., Hellwig, P.: Infrared spectra and molar absorption coefficients of the 20 alpha amino acids in aqueous solutions in the spectral range from 1800 to 500 cm−1. Spectrochim. Acta A 64, 987–1001 (2006).  https://doi.org/10.1016/j.saa.2005.08.025 CrossRefGoogle Scholar
  46. 46.
    Rainey, J.K., Goh, M.C.: A statistically derived parameterization for the collagen triple-helix. Protein Sci. 11, 2748–2754 (2002).  https://doi.org/10.1110/ps.0218502 CrossRefGoogle Scholar
  47. 47.
    Gunn, J.S., Ehrlich, H.P.: Evidence that translocation of collagen fibril segments plays a role in early intrinsic tendon repair. Plast. Reconstr. Surg. 129, 300e–306e (2012).  https://doi.org/10.1097/PRS.0b013e31823aeb5a CrossRefGoogle Scholar
  48. 48.
    Hazard, S.W., Myers, R.L., Ehrlich, H.P.: Demonstrating collagen tendon fibril segments involvement in intrinsic tendon repair. Exp. Mol. Pathol. 91, 660–663 (2011).  https://doi.org/10.1016/j.yexmp.2011.08.002 CrossRefGoogle Scholar
  49. 49.
    Svensson, R.B., Herchenhan, A., Starborg, T., Larsen, M., Kadler, K.E., Qvortrup, K., Magnusson, S.P.: Evidence of structurally continuous collagen fibrils in tendons. Acta Biomater. 50, 293–301 (2017).  https://doi.org/10.1016/j.actbio.2017.01.006 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratorio de Análisis e Investigaciones Arqueométricas, Instituto de Alta Investigación (IAI)Universidad de TarapacáAricaChile
  2. 2.Laboratorio de Espectroscopía Vibracional, Facultad de CienciasUniversidad de ChileÑuñoaChile
  3. 3.Centro de Física Aplicada y Tecnología AvanzadaUniversidad Nacional Autónoma de MéxicoQuerétaroMexico

Personalised recommendations