Advertisement

Shock Waves

pp 1–13 | Cite as

An adaptive discontinuity fitting technique on unstructured dynamic grids

  • S. Chang
  • X. Bai
  • D. Zou
  • Z. Chen
  • J. LiuEmail author
Original Article

Abstract

A novel, adaptive discontinuity fitting technique has been further developed on unstructured dynamic grids to fit both shock waves and contact discontinuities in steady flows. Moreover, in order to efficiently obtain shock-fitting solutions, two strategies, direct-fitting and indirect-fitting, have been proposed to, respectively, deal with simple and complex flows. More specifically, without first computing the flow field by a shock-capturing method, the direct-fitting strategy, mainly dealing with these discontinuities of which topologies are clearly known, can quickly obtain the solutions by initially presetting an approximate discontinuity front. By contrast, the indirect-fitting strategy, especially in coping with the complicated discontinuity structures, must utilize both shock-capturing solutions and shock detection techniques to first determine initial discontinuity locations. The two strategies have been successfully applied to a series of compressible flows, including a two-dimensional flow with type IV shock–shock interaction and a three-dimensional flow with type VI interaction. In addition, comparing the fully-fitting solution with the partially-fitting solution in the discontinuity interaction region, it is indicated that an accurate result can be acquired if all the discontinuities in the vicinity of interaction points are fully fitted. Nevertheless, the computational accuracy of expansion waves can indeed significantly affect the downstream discontinuities.

Keywords

Shock fitting Unstructured dynamic grids Supersonic flow Shock interactions 

Notes

Acknowledgements

This work has been financially supported by the National Natural Science Foundation of China (Grant No. 11872144). Moreover, Fan Zhang at the School of Aeronautics and Astronautics, Sun Yat-sen University, is appreciated for offering advice on improving this article.

References

  1. 1.
    Moretti, G.: Thirty-six years of shock fitting. Comput. Fluids 31, 719–723 (2002).  https://doi.org/10.1016/s0045-7930(01)00072-x CrossRefzbMATHGoogle Scholar
  2. 2.
    Casper, J., Carpenter, M.H.: Computational considerations for the simulation of shock-induced sound. SIAM J. Sci. Comput. 19(3), 813–828 (1998).  https://doi.org/10.1137/s1064827595294101 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Lee, T.K., Zhong, X.L.: Spurious numerical oscillations in simulation of supersonic flows using shock-capturing schemes. AIAA J. 37, 313–319 (1999).  https://doi.org/10.2514/2.732 CrossRefGoogle Scholar
  4. 4.
    Paciorri, R., Bonfiglioli, A.: Shock interaction computations on unstructured, two-dimensional grids using a shock-fitting technique. J. Comput. Phys. 230(8), 3155–3177 (2011).  https://doi.org/10.1016/j.jcp.2011.01.018 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Salas, M.: A Shock-Fitting Primer. CRC Press, Boca Raton (2009).  https://doi.org/10.1201/9781439807590 CrossRefGoogle Scholar
  6. 6.
    Emmons, H.W.: The Numerical solution of compressible fluid flow problems. Technical Report Archive & Image Library 932 (1944)Google Scholar
  7. 7.
    Moretti, G., Abbett, M.: A time-dependent computational method for blunt body flows. AIAA J. 4(12), 2136–2141 (1966).  https://doi.org/10.2514/3.3867 CrossRefzbMATHGoogle Scholar
  8. 8.
    Bleich, G., Moretti, G.: Three-dimensional flow around blunt bodies. AIAA J. 5(9), 1557–1562 (1967).  https://doi.org/10.2514/3.55340 CrossRefzbMATHGoogle Scholar
  9. 9.
    Shubin, G.R., Stephens, A.B., Glaz, H.M., Wardlaw, A.B., Hackerman, L.B.: Steady shock tracking, Newton’s method, and the supersonic blunt body problem. SIAM J. Sci. Stat. Comput. 3(2), 127–144 (1982).  https://doi.org/10.1137/0903009 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Moretti, G.: Thoughts and Afterthoughts About Shock Computations. Polytechnic Institute of Brooklyn. PIBAL Report 72-37 (1972)Google Scholar
  11. 11.
    Moretti, G.: Three-dimensional, supersonic, steady flows with any number of imbedded shocks. 12th Aerospace Sciences Meeting, Washington, DC, AIAA Paper 74-10 (1974).  https://doi.org/10.2514/6.1974-10
  12. 12.
    Moretti, G.: Computation of flows with shocks. Annu. Rev. Fluid Mech. 19, 313–337 (1987).  https://doi.org/10.1146/annurev.fluid.19.1.313 CrossRefGoogle Scholar
  13. 13.
    Marsilio, R., Moretti, G.: Shock-fitting method for two-dimensional inviscid, steady supersonic flows in ducts. Meccanica 24(4), 216–222 (1989).  https://doi.org/10.1007/bf01556453 MathSciNetCrossRefGoogle Scholar
  14. 14.
    Onofri, M., Paciorri, R.: Shock Fitting: Classical Techniques, Recent Developments, and Memoirs of Gino Moretti. Springer, New York (2017).  https://doi.org/10.1007/978-3-319-68427-7 CrossRefzbMATHGoogle Scholar
  15. 15.
    Paciorri, R., Bonfiglioli, A.: A shock-fitting technique for 2D unstructured grids. Comput. Fluids. 38, 715–726 (2009).  https://doi.org/10.1016/j.compfluid.2008.07.007 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Bonfiglioli, A., Paciorri, R., Campoli, L.: Unsteady shock-fitting for unstructured grids. Int. J. Numer. Methods Fluids 81(4), 245–261 (2016).  https://doi.org/10.1002/fld.4183 MathSciNetCrossRefGoogle Scholar
  17. 17.
    Liu, J., Zou, D.Y., Xu, C.G.: An unsteady shock-fitting technique based on unstructured moving grids. Acta Aerodyn. Sin. 33(1), 10–16 (2015).  https://doi.org/10.7638/kqdlxxb-2014.0109 Google Scholar
  18. 18.
    Liu, J., Zou, D.Y., Dong, H.B.: A moving discontinuity fitting technique to simulate shock waves impinged on a straight wall. Acta Aeronaut. Astronaut. Sin. 37, 836–846 (2016).  https://doi.org/10.7527/S1000-6893.2015.0254 Google Scholar
  19. 19.
    Zou, D.Y., Xu, C.G., Dong, H.B., Liu, J.: A shock-fitting technique for cell-centered finite volume methods on unstructured dynamic meshes. J. Comput. Phys. 345, 866–882 (2017).  https://doi.org/10.1016/j.jcp.2017.05.047 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Liu, J., Zou, D.Y., Dong, H.B.: Principle of new discontinuity fitting technique based on unstructured moving grid. Phys. Gases 2, 13–20 (2017).  https://doi.org/10.19527/j.cnki.2096-1642.2017.01.002 Google Scholar
  21. 21.
    Zou, D.Y., Liu, J., Zou, L.: Applications of shock-fitting technique for compressible flow in cell-centered finite volume methods. Acta Aeronaut. Astronaut. Sin. 11, 121–363 (2017).  https://doi.org/10.7527/S1000-6893.2017.121363 Google Scholar
  22. 22.
    Liu, J., Xu, C.G., Bai, X.Z.: Finite Volume Methods and Unstructured Dynamic Meshes. Science Press, Beijing (2016)Google Scholar
  23. 23.
    Lyubimov, A.N., Rusanov, V.V.: Gas flows past blunt bodies, part II: table of the gasdynamic functions. NASA. TT, F-715 (1973)Google Scholar
  24. 24.
    Zhang, F., Liu, J., Chen, B.S., Zhong, W.X.: Evaluation of rotated upwind schemes for contact discontinuity and strong shock. Comput. Fluids 134, 11–22 (2016).  https://doi.org/10.1016/j.compfluid.2016.05.010 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Zhang, F., Liu, J., Chen, B.S., Zhong, W.X.: A robust low-dissipation AUSM-family scheme for numerical shock stability on unstructured grids. Int. J. Numer. Methods Fluids 84(3), 135–151 (2017).  https://doi.org/10.1002/fld.4341 MathSciNetCrossRefGoogle Scholar
  26. 26.
    Zhang, F., Liu, J., Chen, B.S.: Modified multi-dimensional limiting process with enhanced shock stability on unstructured grids. Comput. Fluids 161, 171–188 (2018).  https://doi.org/10.1016/j.compfluid.2017.11.019 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Chen, Z.D., Zou, D.Y., Zhang, F., Liu, J.: A flow feature extraction method for shock-fitting computation. In: Proceedings of the Tenth International Conference on Computational Fluid Dynamics, Barcelona, Spain (2018)Google Scholar
  28. 28.
    Liou, M.S.: A sequel to AUSM, Part II: \(\text{ AUSM }^{+}\)-up for all speeds. J. Comput. Phys. 214(1), 137–170 (2006).  https://doi.org/10.1016/j.jcp.2005.09.020 MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Edney, B.: Anomalous Heat Transfer and Pressure Distributions on Blunt Bodies at Hypersonic Speeds in the Presence of an Impinging Shock. Flygtekniska Forsoksanstalten, Stockholm (1968)Google Scholar
  30. 30.
    Duquesne, N., Alziary de Roquefort, T.: Numerical investigation of a three-dimensional turbulent shock/shock interaction. 36th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA Paper 98-0774 (1998).  https://doi.org/10.2514/6.1998-774
  31. 31.
    Chang, S.Y., Zou, D.Y., Liu, J.: Simulating hypersonic projectile launching process in the ballistic range by Adaptive Discontinuity Fitting solver technique. J. Exp. Fluid Mech. 33(2), 23–29 (2019).  https://doi.org/10.11729/syltlx20180104 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Structural Analysis for Industrial EquipmentDalian University of TechnologyDalianChina
  2. 2.School of Aeronautics and AstronauticsDalian University of TechnologyDalianChina
  3. 3.China Aerodynamics Research and Development CenterMianyangChina

Personalised recommendations