Advertisement

Shock Waves

pp 1–12 | Cite as

On the location of the laser energy deposition region in wave drag reduction

  • R. JoarderEmail author
Original Article
  • 25 Downloads

Abstract

A two-dimensional numerical simulation is carried out to determine the optimum location of the concentrated laser energy deposition region for maximum wave drag reduction of a blunt body. A 25.4-mm-diameter semicircle, Mach 3.45, and 50 mJ pulse energy are chosen as the representative blunt body, free-stream Mach number, and magnitude of the deposited laser energy, respectively. The location of the energy deposition region is varied discretely from 21 to 50 mm upstream of the center of the semicircle along its axis of symmetry. The lower limit of the distance is just upstream of the blunt body bow shock along the axis of symmetry. It is found that for the assumed conditions, the maximum wave drag reduction happens at the lower limit of the distances. A time-resolved analysis of the interaction between the laser-induced blast wave and the bow shock is carried out to arrive at the conclusions. It is observed that the blast wave reflects as an expansion wave from the bow shock for the 21 mm case, whereas the reflected wave is a shock wave for all other cases. The time history of the static pressure at the blunt body nose and wave drag per unit depth on the blunt body are also provided for the above locations of the energy deposition region to justify the inferences.

Keywords

Wave drag Energy deposition Laser pulse CFD Compressible flow 

Notes

References

  1. 1.
    Bogdonoff, S.M., Vas, I.E.: Preliminary investigations of spiked bodies at hypersonic speeds. Wright Air Dev. Center TN 58-7 (AD 142 280), March (1953)Google Scholar
  2. 2.
    Crowford, D.H.: Investigation of the flow over a spiked-nose hemisphere-cylinder at a Mach number of 6.8. NASA TN-D118, Dec. (1959)Google Scholar
  3. 3.
    Motoyama, N., Mihara, K., Miyajima, R., Watanuki, T., Kubota, H.: Thermal protection and drag reduction with use of spike in hypersonic flow. 10th AIAA/NAL-NASDA-ISAS International Space Planes and Hypersonic Systems and Technologies Conference, Kyoto, Japan, AIAA Paper 2001-1828 (2001).  https://doi.org/10.2514/6.2001-1828
  4. 4.
    Gnemmi, P., Srulijes, J., Roussel, K., Runne, K.: Flowfield around spike-tipped bodies for high attack angles at mach 4.5. J. Spacecr. Rockets 40(5), 622–631 (2003).  https://doi.org/10.2514/2.6910 CrossRefGoogle Scholar
  5. 5.
    Menezes, V., Saravanan, S., Jagadeesh, G., Reddy, K.P.J.: Experimental investigations of hypersonic flow over highly blunted cones with aerospikes. AIAA J. 41(10), 1955–1966 (2003).  https://doi.org/10.2514/2.1885 CrossRefGoogle Scholar
  6. 6.
    Schuelein, E.: Wave drag reduction approach for blunt bodies at high angles of attack: Proof-of-concept experiments. 4th Flow Control Conference, Seattle, Washington, AIAA Paper 2008-4000 (2008).  https://doi.org/10.2514/6.2008-4000
  7. 7.
    Chernyi, G.: Some recent results in aerodynamic applications of flows with localized energy addition. 9th International Space Planes and Hypersonic Systems and Technologies Conference, Norfolk, VA, AIAA Paper 99-4819 (1999).  https://doi.org/10.2514/6.1999-4819
  8. 8.
    Bityurin, V., Klimov, A., Leonov, S., Bocharov, A., Lineberry, J.: Assessment of a concept of advanced flow/flight control for hypersonic flights in atmosphere. 9th International Space Planes and Hypersonic Systems and Technologies Conference, Norfolk, VA, AIAA Paper 99-4820 (1999).  https://doi.org/10.2514/6.1999-4820
  9. 9.
    Knight, D., Kuchinskiy, V., Kuranov, A., Sheikin, E.: Survey of aerodynamic flow control at high speed by energy deposition. 41st Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA Paper 2003-0525 (2003).  https://doi.org/10.2514/6.2003-525
  10. 10.
    Kandala, R., Candler, G.V.: Numerical studies of laser-induced energy deposition for supersonic flow control. AIAA J. 42(11), 2266–2275 (2004).  https://doi.org/10.2514/1.6817 CrossRefGoogle Scholar
  11. 11.
    Fomin, V.M., Tretyakov, P.K., Taran, J.P.: Flow control using various plasma and aerodynamic approaches (Short Review). Aerosp. Sci. Technol. 8(5), 411–421 (2004).  https://doi.org/10.1016/j.ast.2004.01.005 CrossRefGoogle Scholar
  12. 12.
    Bletzinger, P., Ganguly, B.N., Garscadden, A.: Plasmas in high speed aerodynamics. J. Phys. D Appl. Phys. 38(4), R33 (2005).  https://doi.org/10.1088/0022-3727/38/4/r01 CrossRefGoogle Scholar
  13. 13.
    Zheltovodov, A.A., Pimonov, E.A., Knight, D.D.: Energy deposition influence on supersonic flow over axisymmetric bodies. 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA Paper 2007-1230 (2007).  https://doi.org/10.2514/6.2007-1230
  14. 14.
    Schülein, E., Zheltovodov, A.A., Loginov, M.S., Pimonov, E.A.: Experimental and numerical study of shock wave transformation by laser-induced energy deposition. International Conference on Methods of Aerophysical Research, ICMAR (2008)Google Scholar
  15. 15.
    Ogino, Y., Ohnishi, N., Taguchi, S., Sawada, K.: Baroclinic vortex influence on wave drag reduction induced by pulse energy deposition. Phys. Fluids 21, 066102 (2009).  https://doi.org/10.1063/1.3147932 CrossRefzbMATHGoogle Scholar
  16. 16.
    Golbabaei-Asl, M., Knight, D.D.: Numerical characterization of high-temperature filament interaction with blunt cylinder at Mach 3. Shock Waves 24, 123–138 (2014).  https://doi.org/10.1007/s00193-013-0471-6 CrossRefGoogle Scholar
  17. 17.
    Azarova, O.A., Knight, D.D.: Numerical prediction of dynamics of interaction of laser discharge plasma with a hemisphere-cylinder in a supersonic flow. 53rd AIAA Aerospace Sciences Meeting, Kissimmee, Florida, AIAA Paper 2015-0582 (2015).  https://doi.org/10.2514/6.2015-0582
  18. 18.
    Joarder, R., Padhi, U.P., Singh, A.P., Tummalapalli, H.: Two-dimensional numerical simulations on laser energy depositions in a supersonic flow over a semi-circular body. Int. J. Heat Mass Transf. 105, 723–740 (2017).  https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.025 CrossRefGoogle Scholar
  19. 19.
    Mortazavi, M., Knight, D., Azarova, O., Shi, J., Yan, H.: Numerical simulation of energy deposition in a supersonic flow past a hemisphere. 52nd Aerospace Sciences Meeting, National Harbor, Maryland, AIAA Paper 2014-0944 (2014).  https://doi.org/10.2514/6.2014-0944
  20. 20.
    Mortazavi, M., Knight, D.: Numerical simulation of energy deposition in a viscous supersonic flow past a hemisphere. 53rd AIAA Aerospace Sciences Meeting, Kissimmee, Florida, AIAA Paper 2015-0583 (2015).  https://doi.org/10.2514/6.2015-0583
  21. 21.
    Joarder, R.: On the mechanism of wave drag reduction by concentrated laser energy deposition in supersonic flows over a blunt body. Shock Waves (2018).  https://doi.org/10.1007/s00193-018-0868-3 Google Scholar
  22. 22.
    Tannehill, J.C., Anderson, D.A., Pletcher, R.H.: Computational Fluid Mechanics and Heat Transfer, 2nd edn. Taylor & Francis, Milton Park (1997).  https://doi.org/10.1201/b12884 zbMATHGoogle Scholar
  23. 23.
    Shuen, J.-S., Liou, M.-S., van Leer, B.: Inviscid flux-splitting algorithm for real gases with non-equilibrium chemistry. J. Comput. Phys. 90(2), 371–395 (1990).  https://doi.org/10.1016/0021-9991(90)90172-W CrossRefzbMATHGoogle Scholar
  24. 24.
    Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357–372 (1981).  https://doi.org/10.1016/0021-9991(81)90128-5 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Peyret, R., Taylor, D.T.: Computational Methods for Fluid Flow. Springer, Berlin (1983).  https://doi.org/10.1007/978-3-642-85952-6 CrossRefzbMATHGoogle Scholar
  26. 26.
    Van Leer, B.: Towards the ultimate conservative difference scheme, V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32(1), 101–136 (1979).  https://doi.org/10.1006/jcph.1997.5704 CrossRefzbMATHGoogle Scholar
  27. 27.
    Van Albada, G.D., Van Leer, B., Roberts, W.W.: A comparative study of computational methods in cosmic gas dynamics. Astron. Astrophys. 108, 76–84 (1982).  https://doi.org/10.1007/978-3-642-60543-7_6 zbMATHGoogle Scholar
  28. 28.
    Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988).  https://doi.org/10.1016/0021-9991(88)90177-5 MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Dors, I., Parigger, C., Lewis, J.: Fluid dynamic effects following laser-induced optical breakdown. 38th Aerospace Sciences Meeting and Exhibit, Reno, NV, AlAA Paper 2000-0717 (2000).  https://doi.org/10.2514/6.2000-717
  30. 30.
    Joarder, R., Gebel, G.C., Mosbach, T.: Two-dimensional numerical simulation of a decaying laser spark in air with radiation loss. Int. J. Heat Mass Transf. 63, 284–300 (2013).  https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.072 CrossRefGoogle Scholar
  31. 31.
    Haselbacher, A.: On impedance in shock-refraction problems. Shock Waves 22, 381–384 (2012).  https://doi.org/10.1007/s00193-012-0377-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Aerospace Engineering DepartmentIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations