Advertisement

Shock Waves

pp 1–21 | Cite as

Numerical investigation of the liquid-fueled pulse detonation engine for different operating conditions

  • V. B. NguyenEmail author
  • C. J. Teo
  • P.-H. Chang
  • J. M. Li
  • B. C. Khoo
Original Article
  • 54 Downloads

Abstract

In this study, an intensive simulation platform is developed and implemented to simulate the three stages in the operational cycle of the liquid-fueled pulse detonation engine. The three stages encompass the liquid fuel injection and evaporation process, deflagration-to-detonation transition process, and detonation propagation process. The Lagrangian–Eulerian approaches are employed to model the discrete liquid fuel droplets and the continuous vapor phase, respectively. The breakup and evaporation of liquid droplets are modeled using sub-models, while the interactions between the liquid droplets and the vapor phase are expressed through the two-way interaction models. The Jet-A liquid fuel is injected into the detonation chamber as the fuel for the engine, while the air flow is used as the oxidizer. A reduced chemical kinetic model of fuel/air is used to model the combustion process. The simulation platform is systematically validated against the experimental data for every stage of the operating cycle. To study the influence of the inlet and operating conditions, the numerical simulations are performed for three different operating conditions, which are the change in inlet air temperature, the change in inlet air flow velocity, and the change in liquid fuel mass flow rate. The obtained results indicate that the mass fraction of pre-vaporization of fuel plays an important role in the successful DDT process and/or detonation onset. The deflagration can successfully transit to detonation for both the cases of complete and incomplete vaporization of the liquid droplets inside the detonation chamber. The deflagration cannot successfully transit to detonation for the case of too lean or too rich fuel vapor in the mixture. The calculated burning temperature and Chapman–Jouguet (C–J) detonation velocity are slightly lower in the cases of the incomplete vaporization when compared to the complete vaporization cases. In addition, our numerical results show that the burning process occurs in two stages in the incomplete vaporization case: The first burning stage plays a main role in the successful DDT process, while the second burning stage only plays the role of augmentation.

Keywords

Liquid-fueled PDE Evaporation Deflagration-to-detonation transition Pulse detonation engines 

Notes

References

  1. 1.
    Kailasanath, K.: Recent developments in the research on pulse detonation engines. AIAA J. 41, 145–159 (2003).  https://doi.org/10.2514/2.1933 CrossRefGoogle Scholar
  2. 2.
    Webber, W.F.: Spray combustion in the presence of a travelling wave. Symp. (Int.) Combust. 8, 1129–1140 (1961).  https://doi.org/10.1016/S0082-0784(06)80611-9 CrossRefGoogle Scholar
  3. 3.
    Cramer, F.B.: The onset of detonation in droplet combustion field. Symp. (Int.) Combust. 9, 482–484 (1963).  https://doi.org/10.1016/S0082-0784(63)80058-2 CrossRefGoogle Scholar
  4. 4.
    Ragland, K.W., Dabora, E.K., Nicholls, J.A.: Observed structure of spray detonation. Phys. Fluids 11, 2377–2389 (1968).  https://doi.org/10.1063/1.1691827 CrossRefGoogle Scholar
  5. 5.
    Dabora, E.K., Ragland, K.W., Nicholls, J.A.: Droplet-size effects in spray detonations. Symp. (Int.) Combust. 12, 19–26 (1969).  https://doi.org/10.1016/S0082-0784(69)80388-7 CrossRefGoogle Scholar
  6. 6.
    Bull, D.C., McLeod, M.A., Minzer, G.A.: Detonation of unconfined fuel aerosols. Prog. Astronaut. Aeronaut. 75, 48–60 (1981).  https://doi.org/10.2514/5.9781600865497.0048.0060 Google Scholar
  7. 7.
    Brophy, C.M., Netzer, D.W., Sinibali, J., Johnson, R.: Detonation of JP-10 aerosol for pulse detonation engine applications. In: Roy, G.D., Frolov, S.M., Netzer, D.W., Borisov, A.A. (eds.) High-Speed Deflagration and Detonation, pp. 207–222. ELEX-KM Publishers, Moscow (2001)Google Scholar
  8. 8.
    Frolov, S.M.: Liquid-fueled, air-breathing pulse detonation engine demonstrator: operation principles and performances. J. Propuls. Power 22(6), 1162–1169 (2006).  https://doi.org/10.2514/1.17968 CrossRefGoogle Scholar
  9. 9.
    Fan, W., Yan, C., Huang, X., Zhang, Q., Zheng, L.: Experimental investigation of two-phase detonation engine. Combust. Flame 133(4), 441–450 (2003).  https://doi.org/10.1016/S0010-2180(03)00043-9 CrossRefGoogle Scholar
  10. 10.
    Schauer, F.R., Miser, C.L., Tucker, K.C., Bradley, R.P., Hoke, J.L.: Detonation initiation of hydrocarbon-air mixture in pulse detonation engine. 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV. AIAA Paper 2005-1343 (2005).  https://doi.org/10.2514/6.2005-1343
  11. 11.
    Tucker, K.C., King, P.I., Schauer, F.R.: Hydrocarbon fuel flash vaporization for pulse detonation combustion. J. Propuls. Power 24(4), 788–796 (2008).  https://doi.org/10.2514/1.28412 CrossRefGoogle Scholar
  12. 12.
    Li, J.M., Teo, C.J., Chang, P.H., Li, L., Lim, K.S., Khoo, B.C.: Excessively fuel rich conditions for cold starting of liquid fueled pulse detonation engines. J. Propuls. Power 33(1), 71–79 (2017).  https://doi.org/10.2514/1.B36088 CrossRefGoogle Scholar
  13. 13.
    Williams, F.A.: Structure of detonation in diluted sprays. Phys. Fluids 4, 1434–1443 (1961).  https://doi.org/10.1063/1.1706236 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Borisov, A.A., Gelfand, B.E., Gubin, S.A., Kogarko, S.M., Podgrebenkov, A.L.: The reaction zone of two-phase detonations. Astronaut. Acta 15, 411–417 (1970)Google Scholar
  15. 15.
    Burcat, A., Eidelman, S.: Evolution of the detonation wave in a cloud of fuel droplets: Part II. Influence of fuel droplets. AIAA J. 18, 1233–1236 (1980).  https://doi.org/10.2514/3.7717 CrossRefzbMATHGoogle Scholar
  16. 16.
    Chang, E.J., Kailasanath, K.: Shock wave interactions with particles and fuel droplets. Shock Waves 12, 333–341 (2003).  https://doi.org/10.1007/s00193-002-0170-1 CrossRefzbMATHGoogle Scholar
  17. 17.
    Cheatham, S., Kailasanath, K.: Numerical modelling of liquid-fuelled detonation in tubes. J. Combust. Theory Model. 9, 23–48 (2005).  https://doi.org/10.1080/13647830500051786 CrossRefzbMATHGoogle Scholar
  18. 18.
    Miller, R.S., Bellan, J.: Direct numerical simulation of the confined three-dimensional gas mixing layer with one evaporating hydrocarbon-droplet-laden stream. J. Fluid Mech. 384, 293–338 (1999).  https://doi.org/10.1017/S0022112098004042 CrossRefzbMATHGoogle Scholar
  19. 19.
    Aggarwal, S.K., Peng, F.: A review of droplet dynamics and evaporation modelling for engineering calculations. J. Eng. Gas Turbines Power 117, 453–460 (1995).  https://doi.org/10.1115/1.2814117 CrossRefGoogle Scholar
  20. 20.
    Gubin, S.A., Sichel, M.: Calculation of detonation velocity of a mixture of liquid fuel droplet and gas oxidizer. Combust. Sci. Technol. 17, 109–117 (1977).  https://doi.org/10.1080/00102207708946821 CrossRefGoogle Scholar
  21. 21.
    Nguyen, V.B., Li, J.M., Chang, P.H., Phan, Q.T., Teo, C.J., Khoo, B.C.: On the deflagration-to-detonation transition (DDT) process with added energetic solid particles for pulse detonation engines (PDE). Shock Waves 28(6), 1143–1167 (2018).  https://doi.org/10.1007/s00193-017-0800-2 CrossRefGoogle Scholar
  22. 22.
    Ranz, W.E., Marshall, W.R.: Evaporation from drops. Part I. Chem. Eng. Prog. 48(3), 141–146 (1952)Google Scholar
  23. 23.
    Ranz, W.E., Marshall, W.R.: Evaporation from drops. Part II. Chem. Eng. Prog. 48(4), 173–180 (1952)Google Scholar
  24. 24.
    Liu, A.B., Mather, D., Reitz, R.D.: Modeling the effects of drop drag and breakup on fuel sprays. SAE Technical Paper 930072. SAE (1993).  https://doi.org/10.4271/930072
  25. 25.
    Law, C.K., Law, H.K.: A d 2-law for multicomponent droplet vaporization and combustion. AIAA J. 20(4), 522–527 (1982).  https://doi.org/10.2514/3.51103 CrossRefGoogle Scholar
  26. 26.
    Ajmani, K., Kundu, K., Penko, P.: A study on detonation of Jet-A using a reduced mechanism. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL. AIAA Paper 2010-1515 (2010).  https://doi.org/10.2514/6.2010-1515
  27. 27.
    Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994).  https://doi.org/10.2514/3.12149 CrossRefGoogle Scholar
  28. 28.
    Launder, B.E., Sharma, B.I.: Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc. Lett. Heat Mass Transf. 1(2), 131–138 (1974).  https://doi.org/10.1016/0094-4548(74)90150-7 CrossRefGoogle Scholar
  29. 29.
    Wilcox, D.C.: Formulation of the k–ω turbulence model revisited. AIAA J. 46(11), 2823–2838 (2008).  https://doi.org/10.2514/1.36541 CrossRefGoogle Scholar
  30. 30.
    Henry, W., et al.: OpenFOAM User Guide, Version 2.1.x. The OpenFOAM Foundation (2012). http://www.openfoam.org
  31. 31.
    Menter, F.R., Kuntz, M., Langtry, R.: Ten years of industrial experience with the SST turbulence model. Turbul. Heat Mass Transf. 4, 624–632 (2003)Google Scholar
  32. 32.
    Kuensberg, S.C., Kong, S.-C., Reitz, R.D.: Modelling the effects of injector nozzle geometry on diesel sprays. SAE Paper 1999-01-0912 (1999).  https://doi.org/10.4271/1999-01-0912
  33. 33.
    Kee, R.J., Rupley, F.M., Miller, J.A., et al.: The CHEMKIN thermodynamic database, CHEMKIN Collection, release 3.6 (2000). http://www.sandia.gov/chemkin
  34. 34.
    Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena. Wiley, New York (2001)Google Scholar
  35. 35.
    Bray, K.N.C., Moss, J.B.: A unified statistical model of the premixed turbulent flame. Acta Astronaut. 4(3–4), 291–319 (1977).  https://doi.org/10.1016/0094-5765(77)90053-4 CrossRefGoogle Scholar
  36. 36.
    Turns, S.R.: An Introduction to Combustion: Concepts and Applications, 3rd edn. McGraw-Hill, New Delhi (2000)Google Scholar
  37. 37.
    Weller, H.G., Tabor, G., Gosman, A.D., Fureby, C.: Application of a flame-wrinkling LES combustion model to a turbulent mixing layer. Int. Symp. Combust. 27, 899–907 (1998).  https://doi.org/10.1016/S0082-0784(98)80487-6 CrossRefGoogle Scholar
  38. 38.
    Ettner, F., Vollmer, K.G., Sattelmayer, T.: Numerical simulation of the deflagration-to-detonation transition in inhomogeneous mixtures. J. Combust. 2014, 686347 (2014).  https://doi.org/10.1155/2014/686347 CrossRefGoogle Scholar
  39. 39.
    Toro, E.F., Spruce, M., Spears, W.: Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4(1), 25–34 (1994).  https://doi.org/10.1007/BF01414629 CrossRefzbMATHGoogle Scholar
  40. 40.
  41. 41.
    Migdal, D., Agosta, V.: A source flow model for continuum gas-particle flow. J. Appl. Mech. 34(4), 860–865 (1967).  https://doi.org/10.1115/1.3607848 CrossRefzbMATHGoogle Scholar
  42. 42.
    Baseline Spray A: non-reacting conditions, ECN Workshop 1, May 2011. http://public.ca.sandia.gov/ecn/cvdata/targetCondition/sprayA.php
  43. 43.
    Nguyen, V.B., Li, J.M., Chang, P.H., Teo, C.J., Khoo, B.C.: Effect of ethylene fuel/air equivalence ratio on the dynamics of deflagration-to-detonation transition and detonation propagation process. Combust. Sci. Technol. 190(9), 1630–1658 (2018).  https://doi.org/10.1080/00102202.2018.1461091 CrossRefGoogle Scholar
  44. 44.
    Schmidt, D.P., Nouar, I., Senecal, K.K., Rutland, C.J., Martin, J.K., Reitz, R.D.: Pressure-swirl atomization in the near field. SAE Paper 01-0496. SAE (1999).  https://doi.org/10.4271/1999-01-0496
  45. 45.
    Senecal, P.K., Schmidt, D.P., Nouar, I., Rutland, C.J., Reitz, R.D., Corradini, M.: Modeling high speed viscous liquid sheet atomization. Int. J. Multiph. Flow 25, 1073–1097 (1999).  https://doi.org/10.1016/S0301-9322(99)00057-9 CrossRefzbMATHGoogle Scholar
  46. 46.
    Weber, C.: For the decay of a liquid jet. ZAMM 11, 136–154 (1931).  https://doi.org/10.1002/zamm.19310110207 CrossRefGoogle Scholar
  47. 47.
    Ohnesorge, W.: Formation of drops by nozzles and the breakup of liquid jets. J. Appl. Math. Mech. 16, 355–358 (1936)Google Scholar
  48. 48.
    O’Rourke, P.J., Amsden, A.A.: The TAB method for numerical calculation of spray droplet breakup. SAE Technical Paper 872089. SAE (1987).  https://doi.org/10.4271/872089
  49. 49.
    Reitz, R.D.: Mechanisms of atomization processes in high-pressure vaporizing sprays. At. Spray Technol. 3, 309–337 (1987)Google Scholar
  50. 50.
    Beale, J.C., Reitz, R.D.: Modeling spray atomization with the Kelvin–Helmholtz/Rayleigh–Taylor hybrid model. At. Sprays 9, 623–650 (1999).  https://doi.org/10.1615/AtomizSpr.v9.i6.40 CrossRefGoogle Scholar
  51. 51.
    Schiller, L., Naumann, A.: A drag coefficient correlation. Z. Ver. Dtsch. Ing. 77, 318–320 (1935)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Fluid Dynamic DepartmentInstitute of High Performance ComputingSingaporeSingapore
  2. 2.Temasek LaboratoriesNational University of SingaporeSingaporeSingapore
  3. 3.Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations