Advertisement

Shock Waves

pp 1–25 | Cite as

On the use of tabulated equations of state for multi-phase simulations in the homogeneous equilibrium limit

  • F. Föll
  • T. Hitz
  • C. MüllerEmail author
  • C.-D. Munz
  • M. Dumbser
Original Article
  • 152 Downloads

Abstract

The use of complex multi-parameter equations of state in computational fluid dynamics is limited due to their expensive evaluation. Tabulation methods help to overcome this limitation. We propose in this work a tabulation approach for real equations of state that is also suitable for multi-component flows and multi-phase flows with phase transition based on the homogeneous equilibrium method. The tabulation method is based on piecewise polynomials and allows adaptive refinement in state space, a local variation of the degree of the polynomials and even cut-cells to represent saturation lines. A detailed analysis of the benefits of the chosen tabulation approach is provided showing results of benchmark problems for nitrogen under sub- and trans-critical conditions. The tables are used in numerical simulations based on the finite volume approach. To provide reference solutions, an exact Riemann solver is constructed for the tabulated real EOS. Several numerical flux calculations based on approximate Riemann solutions and flux vector splitting approaches are modified for the tabulated equation of state. Besides the comparison for benchmark problems, two applications are depicted, a shock–bubble interaction and an injection of a trans-critical jet, which demonstrate the applicability of this approach to more complex flow simulations.

Keywords

Multi-phase Multi-fluid General equations of state EOS Tabulation Multi-component Exact Riemann solver Approximate Riemann solver Homogeneous equilibrium limit 

Notes

Acknowledgements

The work was supported by the German Research Foundation (DFG) through SFB TRR 40 “Technological Foundations for the Design of Thermally and Mechanically Highly Loaded Components of Future Space Transportation Systems,” SFB TRR 75 “Droplet Dynamics under Extreme Ambient Conditions,” and GRK 2160/1 “Droplet Interaction Technologies.” The simulations were performed on the national supercomputer Cray XC40 (Hazel Hen) at the High Performance Computing Center Stuttgart (HLRS) under the Grant No. hpcmphas/44084. M.D. also acknowledges funding via the European Union’s Horizon 2020 Research and Innovation Programme under the Project ExaHyPE, Grant No. 671698 (call FETHPC-1-2014), and financial support from the Italian Ministry of Education, University and Research (MIUR) in the frame of the Departments of Excellence Initiative 2018–2022 attributed to DICAM of the University of Trento.

References

  1. 1.
    De Lorenzo, M., Lafon, P., Di Matteo, M., Pelanti, M., Seynhaeve, J.M., Bartosiewicz, Y.: Homogeneous two-phase flow models and accurate steam-water table look-up method for fast transient simulations. Int. J. Multiph. Flow 95, 199–219 (2017).  https://doi.org/10.1016/j.ijmultiphaseflow.2017.06.001 MathSciNetGoogle Scholar
  2. 2.
    Praneeth, S., Hickey, J.-P.: Uncertainty quantification of tabulated supercritical thermodynamics for compressible Navier–Stokes solvers (2018). arXiv:1801.06562 [physics.comp-ph]
  3. 3.
    Dumbser, M., Iben, U., Munz, C.D.: Efficient implementation of high order unstructured WENO schemes for cavitating flows. Comput. Fluids 86, 141–168 (2013).  https://doi.org/10.1016/j.compfluid.2013.07.011 MathSciNetzbMATHGoogle Scholar
  4. 4.
    Roe, P.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981).  https://doi.org/10.1016/0021-9991(81)90128-5 MathSciNetzbMATHGoogle Scholar
  5. 5.
    Toro, E.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, Berlin (2009).  https://doi.org/10.1007/b79761
  6. 6.
    Liou, M.S.: A sequel to AUSM, Part II: AUSM\(^+\)-up for all speeds. J. Comput. Phys. 214(1), 137–170 (2006).  https://doi.org/10.1016/j.jcp.2005.09.020 MathSciNetzbMATHGoogle Scholar
  7. 7.
    Flexi—description and source code. https://www.flexi-project.org/. Accessed 02 Oct 2018
  8. 8.
    Hindenlang, F., Gassner, G., Altmann, C., Beck, A., Staudenmaier, M., Munz, C.: Explicit discontinuous Galerkin methods for unsteady problems. Comput. Fluids 61, 86–93 (2012).  https://doi.org/10.1016/j.compfluid.2012.03.006 MathSciNetzbMATHGoogle Scholar
  9. 9.
    Sonntag, M., Munz, C.D.: Efficient parallelization of a shock capturing for discontinuous Galerkin methods using finite volume sub-cells. J. Sci. Comput. 70(3), 1262–1289 (2017).  https://doi.org/10.1007/s10915-016-0287-5 MathSciNetzbMATHGoogle Scholar
  10. 10.
    Dumbser, M., Zanotti, O., Loubère, R., Diot, S.: A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws. J. Comput. Phys. 278, 47–75 (2014).  https://doi.org/10.1016/j.jcp.2014.08.009 MathSciNetzbMATHGoogle Scholar
  11. 11.
    Bell, I., Wronski, J., Quoilin, S., Lemort, V.: Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library CoolProp. Ind. Eng. Chem. Res. 53(6), 2498–2508 (2014).  https://doi.org/10.1021/ie4033999 Google Scholar
  12. 12.
    Lemmon, E., Huber, M., McLinden, M.: NIST standard reference database 23: Reference fluid thermodynamic and transport properties-REFPROP, Gaithersburg (2013)Google Scholar
  13. 13.
    Stewart, H.B., Wendroff, B.: Two-phase flow: Models and methods. J. Comput. Phys. 56(3), 363–409 (1984).  https://doi.org/10.1016/0021-9991(84)90103-7 MathSciNetzbMATHGoogle Scholar
  14. 14.
    Coffee, T., Heimerl, J.: Transport algorithms for premixed, laminar steady-state flames. Combust. Flame 43, 273–289 (1981).  https://doi.org/10.1016/0010-2180(81)90027-4 Google Scholar
  15. 15.
    Kunz, O., Klimeck, R., Wagner, W., Jaeschke, M.: The GERG-2004 Wide-range Equation of State for Natural Gases and Other Mixtures. VDI-Verlag, Düsseldorf, Ber. VDI (2007)Google Scholar
  16. 16.
    Kunz, O., Wagner, W.: The GERG-2008 wide-range equation of state for natural gases and other mixtures: An expansion of GERG-2004. J. Chem. Eng. Data 57(11), 3032–3091 (2012).  https://doi.org/10.1021/je300655b Google Scholar
  17. 17.
    Younglove, B.A.: Thermophysical properties of fluids. I. Argon, ethylene, parahydrogen, nitrogen, nitrogen trifluoride, and oxygen. Technical Report, National Standard Reference Data System (1982)Google Scholar
  18. 18.
    Bell, I.H., Wronski, J., Quoilin, S., Lemort, V.: Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library CoolProp. Ind. Eng. Chem. Res. 53(6), 2498–2508 (2014).  https://doi.org/10.1021/ie4033999. http://www.coolprop.org
  19. 19.
    Lemmon, E.W., Huber, M.L., McLinden, M.O.: NIST standard reference database 23: Reference fluid thermodynamic and transport properties-REFPROP, version 9.1. National Standard Reference Data Series (NIST NSRDS) (2013)Google Scholar
  20. 20.
    Span, R.: Multiparameter Equations of State. Springer, Berlin (2000).  https://doi.org/10.1007/978-3-662-04092-8
  21. 21.
    Span, R., Lemmon, E.W., Jacobsen, R.T., Wagner, W., Yokozeki, A.: A reference equation of state for the thermodynamic properties of nitrogen for temperatures from 63.151 to 1000 K and pressures to 2200 MPa. J. Phys. Chem. Ref. Data 29(6), 1361–1433 (2000).  https://doi.org/10.1063/1.1349047
  22. 22.
    Aursand, P., Gjennestad, M.A., Aursand, E., Hammer, M., Wilhelmsen, Ø.: The spinodal of single- and multi-component fluids and its role in the development of modern equations of state. Fluid Phase Equilib. 436, 98–112 (2017).  https://doi.org/10.1016/j.fluid.2016.12.018 Google Scholar
  23. 23.
    Menikoff, R., Plohr, B.J.: The Riemann problem for fluid flow of real materials. Rev. Mod. Phys. 61, 75–130 (1989).  https://doi.org/10.1103/RevModPhys.61.75 MathSciNetzbMATHGoogle Scholar
  24. 24.
    Edwards, J.R., Franklin, R.K., Liou, M.S.: Low-diffusion flux-splitting methods for real fluid flows with phase transitions. AIAA J. 38(9), 1624–1633 (2000).  https://doi.org/10.2514/2.1145 Google Scholar
  25. 25.
    Hempert, F., Boblest, S., Ertl, T., Sadlo, F., Offenhäuser, P., Glass, C., Hoffmann, M., Beck, A., Munz, C., Iben, U.: Simulation of real gas effects in supersonic methane jets using a tabulated equation of state with a discontinuous Galerkin spectral element method. Comput. Fluids 145, 167–179 (2017).  https://doi.org/10.1016/j.compfluid.2016.12.024 MathSciNetzbMATHGoogle Scholar
  26. 26.
    Thorade, M., Saadat, A.: Partial derivatives of thermodynamic state properties for dynamic simulation. Environ. Earth Sci. 70(8), 3497–3503 (2013).  https://doi.org/10.1007/s12665-013-2394-z Google Scholar
  27. 27.
    Saurel, R., Petitpas, F., Abgrall, R.: Modelling phase transition in metastable liquids: Application to cavitating and flashing flows. J. Fluid Mech. 607, 313–350 (2008).  https://doi.org/10.1017/S0022112008002061 MathSciNetzbMATHGoogle Scholar
  28. 28.
    Traxinger, C., Banholzer, M., Pfitzner, M.: Real-gas effects and phase separation in underexpanded jets at engine-relevant conditions. 2018 AIAA Aerospace Sciences Meeting, Kissimmee, Florida, AIAA Paper 2018-1815 (2018).  https://doi.org/10.2514/6.2018-1815
  29. 29.
    Wood, A.B.: Textbook of Sound. G. Bell And Sons Ltd, London (1930)Google Scholar
  30. 30.
    Matheis, J., Hickel, S.: Multi-component vapor–liquid equilibrium model for les of high-pressure fuel injection and application to ECN spray A. Int. J. Multiph. Flow 99, 294–311 (2018).  https://doi.org/10.1016/j.ijmultiphaseflow.2017.11.001 MathSciNetGoogle Scholar
  31. 31.
    The isothermal flash problem: Michelsen, M.L. Part I. stability. Fluid Phase Equilib. 9, 1–19 (1982).  https://doi.org/10.1016/0378-3812(82)85001-2 Google Scholar
  32. 32.
    Gernert, J., Jäger, A., Span, R.: Calculation of phase equilibria for multi-component mixtures using highly accurate Helmholtz energy equations of state. Fluid Phase Equilib. 375, 209–218 (2014).  https://doi.org/10.1016/j.fluid.2014.05.012 Google Scholar
  33. 33.
    Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131(2), 267–279 (1997).  https://doi.org/10.1006/jcph.1996.5572 MathSciNetzbMATHGoogle Scholar
  34. 34.
    Bassi, F., Rebay, S.: Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 40(1–2), 197–207 (2002).  https://doi.org/10.1002/fld.338 zbMATHGoogle Scholar
  35. 35.
    Kennedy, C.A., Carpenter, M.H., Lewis, R.: Low-storage, explicit Runge–Kutta schemes for the compressible Navier–Stokes equations. Appl. Numer. Math. 35(3), 177–219 (2000).  https://doi.org/10.1016/S0168-9274(99)00141-5 MathSciNetzbMATHGoogle Scholar
  36. 36.
    Larrouturou, B.: How to preserve the mass fractions positivity when computing compressible multi-component flows. J. Comput. Phys. 95(1), 59–84 (1991).  https://doi.org/10.1016/0021-9991(91)90253-H MathSciNetzbMATHGoogle Scholar
  37. 37.
    Godunov, S.K.: A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Mat. Sb. (N.S.) 47(89), 271–306 (1959)Google Scholar
  38. 38.
    Colella, P., Glaz, H.M.: Efficient solution algorithms for the Riemann problem for real gases. J. Comput. Phys. 59(2), 264–289 (1985).  https://doi.org/10.1016/0021-9991(85)90146-9 MathSciNetzbMATHGoogle Scholar
  39. 39.
    Müller, S., Voss, A.: The Riemann problem for the Euler equations with nonconvex and nonsmooth equation of state: Construction of wave curves. SIAM J. Sci. Comput. 28(2), 651–681 (2006).  https://doi.org/10.1137/040619909 MathSciNetzbMATHGoogle Scholar
  40. 40.
    Dahmen, W., Müller, S., Voß, A.: Riemann Problem for the Euler Equation with Non-convex Equation of State Including Phase Transitions. In: Warnecke, G. (ed.) Analysis and Numerics for Conservation Laws, pp. 137–162. Springer, Berlin (2005).  https://doi.org/10.1007/3-540-27907-5_7
  41. 41.
    Smith, R.G.: The Riemann problem in gas dynamics. Trans. Am. Math. Soc. 249(1), 1–50 (1979).  https://doi.org/10.2307/1998910 MathSciNetzbMATHGoogle Scholar
  42. 42.
    Kamm, J.R.: An exact, compressible one-dimensional Riemann solver for general, convex equations of state. Technical Report LA-UR-15-21616, Los Alamos National Laboratory (2015).  https://doi.org/10.2172/1172220
  43. 43.
    Brent, R.: Algorithms for Minimization Without Derivatives. Dover Books on Mathematics. Dover Publications, New York (1973)zbMATHGoogle Scholar
  44. 44.
    Abgrall, R.: An extension of Roe’s upwind scheme to algebraic equilibrium real gas models. Comput. Fluids 19(2), 171–182 (1991).  https://doi.org/10.1016/0045-7930(91)90032-D zbMATHGoogle Scholar
  45. 45.
    Roe, P.L., Pike, J.: Efficient construction and utilisation of approximate Riemann solutions. Proceeding of the 6th International Symposium on Computing Methods in Applied Sciences and Engineering, VI, pp. 499–518. North-Holland Publishing Co., Amsterdam (1985)Google Scholar
  46. 46.
    Harten, A., Lax, P., Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25(1), 35–61 (1983).  https://doi.org/10.1137/1025002 MathSciNetzbMATHGoogle Scholar
  47. 47.
    Chang, C.-H., Liou, M.S.: A robust and accurate approach to computing compressible multiphase flow: Stratified flow model and AUSM+-up scheme. J. Comput. Phys. 225(1), 840–873 (2007).  https://doi.org/10.1016/j.jcp.2007.01.007 MathSciNetzbMATHGoogle Scholar
  48. 48.
    Kitamura, K., Liou, M.S.: Comparative study of AUSM-family schemes in compressible multiphase flow simulations. ICCFD7-3702, 7th International Conference on Computational Fluid Dynamics (ICCFD7), Hawaii (2012)Google Scholar
  49. 49.
    Liou, M.S.: A sequel to AUSM: AUSM\(^+\). J. Comput. Phys. 129(2), 364–382 (1996).  https://doi.org/10.1006/jcph.1996.0256 MathSciNetzbMATHGoogle Scholar
  50. 50.
    Lemmon, E.W., Jacobsen, R.T., Penoncello, S.G., Friend, D.G.: Thermodynamic properties of air and mixtures of nitrogen, argon, and oxygen from 60 to 2000 K at pressures to 2000 MPa. J. Phys. Chem. Ref. Data 29(3), 331–385 (2000).  https://doi.org/10.1063/1.1285884 Google Scholar
  51. 51.
    Abgrall, R., Karni, S.: Computations of compressible multifluids. J. Comput. Phys. 169(2), 594–623 (2001).  https://doi.org/10.1006/jcph.2000.6685 MathSciNetzbMATHGoogle Scholar
  52. 52.
    Quirk, J.J., Karni, S.: On the dynamics of a shock-bubble interaction. J. Fluid Mech. 318, 129–163 (1996).  https://doi.org/10.1017/S0022112096007069 zbMATHGoogle Scholar
  53. 53.
    Mayer, W., Telaar, J., Branam, R., Schneider, G., Hussong, J.: Raman measurements of cryogenic injection at supercritical pressure. Heat Mass Transf. 39(8), 709–719 (2003).  https://doi.org/10.1007/s00231-002-0315-x Google Scholar
  54. 54.
    Ma, P.C., Lv, Y., Ihme, M.: An entropy-stable hybrid scheme for simulations of transcritical real-fluid flows. J. Comput. Phys. 340, 330–357 (2017).  https://doi.org/10.1016/j.jcp.2017.03.022 MathSciNetzbMATHGoogle Scholar
  55. 55.
    Lemmon, E.W., Jacobsen, R.T.: Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air. Int. J. Thermophys.25(1), 21–69 (2004).  https://doi.org/10.1023/B:IJOT.0000022327.04529.f3
  56. 56.
    Venkatarathnam, G., Oellrich, L.: Identification of the phase of a fluid using partial derivatives of pressure, volume, and temperature without reference to saturation properties: Applications in phase equilibria calculations. Fluid Phase Equilib. 301(2), 225–233 (2011).  https://doi.org/10.1016/j.fluid.2010.12.001 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Universität Stuttgart Fakultät Luft- und Raumfahrttechnik und GeodäsieStuttgartGermany
  2. 2.University of TrentoTrentoItaly

Personalised recommendations