Advertisement

Shock Waves

pp 1–12 | Cite as

A novel characteristic length of detonation relevant to supercritical diffraction

  • A. Kawasaki
  • J. KasaharaEmail author
Original Article
  • 40 Downloads

Abstract

For stoichiometric C2H4–O2 and C2H2–O2 mixtures with or without argon dilution, the processes of detonation diffraction have been investigated in a two-dimensional setup through high-speed schlieren imaging, with the characteristic length and the stability of detonation varied by regulating the initial pressure and argon mole fraction of the mixture. In particular, a length relevant to the process of supercritical diffraction (i.e., distance from the channel end corner to reflection point of the transverse detonation on the channel end face, reflection point distance in short) was deduced from obtained sequential schlieren images and analyzed. The reflection point distance can be idealized for the infinitely wide donor channel, and thus, it can be a parameter in which properties intrinsic to each detonable mixture are manifested. Experimental results showed that the reflection point distance was roughly inversely proportional to the initial pressure for identical mixtures and independent of the width of the donor channel at high initial pressures. For a certain combination of the fuel and oxidizer, correlations between the reflection point distance and the initial partial pressure of fuel were very similar regardless of the argon mole fraction. Critical conditions of the diffraction problem could be given for the ratio of the reflection point distance to the channel width, and it was suggested that the critical value lies in a range of 3–5 and does not significantly depend on the stability of the mixture.

Keywords

Reflection point distance Detonation dynamic parameters Detonation diffraction Critical tube diameter Detonation stability Schlieren imaging 

List of symbols

DCJ

Chapman–Jouguet (CJ) velocity

ddt

Diameter of detonation tube

Ea

Activation energy

p0

Initial pressure of mixture

p0,f

Initial partial pressure of fuel

lc

Channel width

lr

Reflection point distance

R

Universal gas constant

T0

Initial temperature

TvN

von Neumann temperature

toc

Depth of observation chamber

yAr

Argon mole fraction

λ

Detonation cell width

τi

Induction time

τr

Reaction time

χ

Detonation stability parameter

Notes

Acknowledgements

The authors thank Ken Matsuoka and Akira Iwakawa for fruitful discussions. This research was financially supported by the Nitto Foundation and the Japanese Society for the Promotion of Science (JSPS) KAKENHI Grant Numbers 17H06741, 17H03480, and 17K18937.

Supplementary material

193_2019_890_MOESM1_ESM.avi (150.3 mb)
Supplementary material 1 (AVI 153924 kb)
193_2019_890_MOESM2_ESM.avi (60.3 mb)
Supplementary material 2 (AVI 61783 kb)
193_2019_890_MOESM3_ESM.docx (13 kb)
Supplementary material 3 (DOCX 13 kb)

References

  1. 1.
    Lee, J.H.S.: On the critical diameter problem. In: Bowen, J.R. (ed.) Dynamics of Exothermicity, pp. 321–335. Gordon and Breach Publishers, Netherlands (1996)Google Scholar
  2. 2.
    Lee, J.H.S.: The Detonation Phenomena. Cambridge University Press, New York (2008).  https://doi.org/10.1017/CBO9780511754708 CrossRefGoogle Scholar
  3. 3.
    Zel’dovich, Y.B., Kogarko, S.M., Simonov, N.N.: An experimental investigation of spherical detonation in gases. Sov. Phys. Tech. Phys. 1, 1689–1713 (1957)Google Scholar
  4. 4.
    Lee, J.H.S.: Dynamic parameter of gaseous detonations. Ann. Rev. Fluid Mech. 16, 311–336 (1984).  https://doi.org/10.1146/annurev.fl.16.010184.001523 CrossRefGoogle Scholar
  5. 5.
    Matsui, H., Lee, J.H.: On the measure of the relative detonation hazards of gaseous fuel oxygen and air mixtures. Symp. Int. Combust. 17, 1269–1280 (1978).  https://doi.org/10.1016/S0082-0784(79)80120-4 CrossRefGoogle Scholar
  6. 6.
    Mitrofanov, V.V., Soloukhin, R.I.: The diffraction of multi-front detonation waves. Sov. Phys. Dokl. 9, 1055–1058 (1965)Google Scholar
  7. 7.
    Edwards, D.H., Thomas, G.O., Nettleton, M.A.: The diffraction of a planar detonation wave at an abrupt area change. J. Fluid Mech. 95, 79–96 (1979).  https://doi.org/10.1017/S002211207900135X CrossRefGoogle Scholar
  8. 8.
    Edwards, D.H., Thomas, G.O., Nettleton, M.A.: Diffraction of planar detonation in various fuel–oxygen mixtures at an area change. Gasdynamics of Detonations and Explosions. Prog. Astronaut. Aeronaut AIAA 75, 341–357 (1981).  https://doi.org/10.2514/5.9781600865497.0341.0357 Google Scholar
  9. 9.
    Moen, I.O., Murray, S.B., Bjerketvedt, D., Rinnan, A., Knystautas, R., Lee, J.H.: Diffraction of detonation initiation from tubes into a large fuel–air explosive cloud. Symp. Int. Combust. 19, 635–645 (1982).  https://doi.org/10.1016/S0082-0784(82)80238-5 CrossRefGoogle Scholar
  10. 10.
    Knystautas, R., Lee, J.H.S., Guirao, C.M.: The critical tube diameter for detonation failure in hydrocarbon–air mixture. Combust. Flame 48, 63–83 (1982).  https://doi.org/10.1016/0010-2180(82)90116-X CrossRefGoogle Scholar
  11. 11.
    Liu, Y.K., Lee, J.H., Knystautas, R.: Effect of geometry on the transmission of detonation through an orifice. Combust. Flame 56, 215–225 (1984).  https://doi.org/10.1016/0010-2180(84)90038-5 CrossRefGoogle Scholar
  12. 12.
    Benedick, W.B., Knystautas, R., Lee, J.H.S.: Large-scale experiments on the transmission of fuel–air detonations from two-dimensional channels. Dynamics of Shock Waves, Explosions, and Detonations. Prog. Astronaut. Aeronaut. AIAA 94, 546–555 (1984).  https://doi.org/10.2514/5.9781600865695.0546.0555 Google Scholar
  13. 13.
    Thomas, G.O., Edwards, D.H., Lee, J.H., Knystautas, R., Moen, I.O., Wei, Y.M.: Detonation diffraction by divergent channels. Dynamics of Explosions. Prog. Astronaut. Aeronaut. AIAA 106, 144–154 (1986).  https://doi.org/10.2514/5.9781600865800.0144.0154 Google Scholar
  14. 14.
    Shepherd, J.E., Moen, I.O., Murray, S.B., Thibault, P.A.: Analyses of the cellular structure of detonations. Symp. Int. Combust. 21, 1649–1658 (1986).  https://doi.org/10.1016/S0082-0784(88)80398-9 CrossRefGoogle Scholar
  15. 15.
    Moen, I.O., Sulmistras, A., Thomas, G.O., Bjerketvedt, D., Thibault, P.A.: Influence of cellular regularity on the behavior of gaseous detonations. Dynamics of Explosions. Prog. Astronaut. Aeronaut. AIAA 106, 220–243 (1986).  https://doi.org/10.2514/5.9781600865800.0220.0243 Google Scholar
  16. 16.
    Desbordes, D., Gauerraud, C., Hamada, L., Presles, H.N.: Failure of the classical dynamic parameters relationships in highly regular cellular detonation systems. Dynamic Aspects of Detonations. Prog. Astronaut. Aeronaut. AIAA 153, 347–359 (1993).  https://doi.org/10.2514/5.9781600866265.0347.0359 Google Scholar
  17. 17.
    Meredith, J., Ng, H.D., Lee, J.H.: Detonation diffraction from an annular channel. Shock Waves 20, 449–455 (2010).  https://doi.org/10.1007/s00193-010-0256-0 CrossRefzbMATHGoogle Scholar
  18. 18.
    Arienti, M., Shepherd, J.E.: A numerical study of detonation diffraction. J. Fluid Mech. 529, 117–146 (2005).  https://doi.org/10.1017/S0022112005003319 MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Eckett, C.A., Quirk, J.J., Shepherd, J.E.: The role of unsteadiness in direct initiation of gaseous detonations. J. Fluid Mech. 421, 147–183 (2000).  https://doi.org/10.1017/S0022112000001555 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Radulescu, M.I., Lee, J.H.S.: The failure mechanism of gaseous detonations: experiments in porous wall tubes. Combust. Flame 131, 29–46 (2002).  https://doi.org/10.1016/S0010-2180(02)00390-5 CrossRefGoogle Scholar
  21. 21.
    Bartlmä, F., Schröder, K.: The diffraction of a plane detonation wave at a convex corner. Combust. Flame 66, 237–248 (1986).  https://doi.org/10.1016/0010-2180(86)90137-9 CrossRefGoogle Scholar
  22. 22.
    Jones, D.A., Kemister, G., Oran, E.S., Sichel, M.: The influence of cellular structure on detonation transmission. Shock Waves 6, 119–129 (1996).  https://doi.org/10.1007/BF02510992 CrossRefGoogle Scholar
  23. 23.
    Pintgen, F., Shepherd, J.E.: Detonation diffraction in gases. Combust. Flame 156, 665–677 (2009).  https://doi.org/10.1016/j.combustflame.2008.09.008 CrossRefGoogle Scholar
  24. 24.
    Deiterding, R.: High-resolution numerical simulation and analysis of Mach reflection structures in detonation waves in low-pressure H2–O2–Ar mixtures: a summary of results obtained with the adaptive mesh refinement framework AMROC. J. Combust. 2011, Article ID 738969 (2011). http://dx.doi.org/10.1155/2011/738969
  25. 25.
    Li, J., Ning, J., Kiyanda, C.B., Ng, H.D.: Numerical simulations of cellular detonation diffraction in a stable gaseous mixture. Propul. Power Res. 5, 177–183 (2016).  https://doi.org/10.1016/j.jppr.2016.07.004 CrossRefGoogle Scholar
  26. 26.
    Mehrjoo, N., Zhang, B., Portaro, R., Ng, H.D., Lee, J.H.S.: Response of critical tube diameter phenomenon to small perturbations for gaseous detonations. Shock Waves 24, 219–229 (2014).  https://doi.org/10.1007/s00193-013-0491-2 CrossRefGoogle Scholar
  27. 27.
    Mehrjoo, N., Gao, Y., Kiyanda, C.B., Ng, H.D., Lee, J.H.S.: Effects of porous walled tubes on detonation transmission into unconfined space. Proc. Combust. Inst. 35, 1981–1987 (2015).  https://doi.org/10.1016/j.proci.2014.06.031 CrossRefGoogle Scholar
  28. 28.
    Murray, S.B., Lee, J.H.S.: On the transformation of planar detonation to cylindrical detonation. Combust. Flame 52, 269–289 (1983).  https://doi.org/10.1016/0010-2180(83)90138-4 CrossRefGoogle Scholar
  29. 29.
    Nagura, Y., Kasahara, J., Sugiyama, Y., Matsuo, A.: Comprehensive visualization of detonation–diffraction structure and sizes in unstable and stable mixtures. Proc. Combust. Inst. 34, 1949–1956 (2013).  https://doi.org/10.1016/j.proci.2012.07.078 CrossRefGoogle Scholar
  30. 30.
    Nagura, Y., Kasahara, J., Matsuo, A.: Multi-frame visualization for detonation wave diffraction. Shock Waves 26, 645–656 (2016).  https://doi.org/10.1007/s00193-016-0663-y CrossRefGoogle Scholar
  31. 31.
    Gordon, S., McBride, B.J.: Computer Program for Calculation Complex Chemical Equilibrium Compositions and Applications—I. Analysis. NASA Reference Publication 1311 (1994)Google Scholar
  32. 32.
    Gordon, S., McBride, B.J.: Computer Program for Calculation Complex Chemical Equilibrium Compositions and Applications—II. User’s Manual and Program Description. NASA Reference Publication 1311 (1996)Google Scholar
  33. 33.
    Ng, H.D., Higgins, A.J., Kiyanda, C.B., Radulescu, M.I., Lee, J.H.S., Bates, K.R., Nikiforakis, N.: Non-linear dynamics and chaos analysis of one-dimensional pulsating detonations. Combust. Theory Model. 9, 159–170 (2005).  https://doi.org/10.1080/13647830500098357 MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Browne, S., Ziegler, J., Shepherd, J.E.: Numerical Solution Methods for Shock and Detonation Jump Conditions. GALCIT Report FM2006.006 (Revised) (2015)Google Scholar
  35. 35.
    Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, W.C., Jr., Lissianski, V.V., Qin, Z.: GRI-Mech 3.0. http://combustion.berkeley.edu/gri-mech/version30/text30.html
  36. 36.
    Strehlow, R.A.: Gas phase detonations: Recent developments. Combust. Flame 12, 81–101 (1968).  https://doi.org/10.1016/0010-2180(68)90083-7 CrossRefGoogle Scholar
  37. 37.
    Kaneshige, M., Shepherd, J.E.: Detonation Database. GALCIT Technical Report FM97-8 (1997)Google Scholar
  38. 38.
    Strehlow, R.A.: Transverse waves in detonations: II. Structure and spacing in H2–O2, C2H2–O2, C2H4–O2, and CH4–O2 systems. AIAA J. 7(3), 492–496 (1969).  https://doi.org/10.2514/3.5134 CrossRefGoogle Scholar
  39. 39.
    Abid, S., Dupre, G., Paillard, C.: Oxidation of gaseous unsymmetrical dimethylhydrazine at high temperatures and detonation of UDMH/O2 mixtures. Dynamic Aspects of Detonations. Prog. Astronaut. Aeronaut. AIAA 153, 162–181 (1991).  https://doi.org/10.2514/5.9781600866265.0162.0181 Google Scholar
  40. 40.
    Auffret, Y., Desbordes, D., Presles, H.N.: Detonation structure of C2H4–O2–Ar mixtures at elevated initial temperature. Shock Waves 9, 107–111 (1999).  https://doi.org/10.1007/s001930050145 CrossRefGoogle Scholar
  41. 41.
    Denisov, Y.N., Troshin, Y.K.: Structure of gaseous detonation in tubes. Sov. Phys. Tech. Phys. 5(4), 419–431 (1960)Google Scholar
  42. 42.
    Manzhalei, V.I., Mitrofanov, V.V., Subbotin, V.A.: Measurement of inhomogeneities of a detonation front in gas mixtures at elevated pressures. Combust. Explos. Shock Waves (USSR) 10(1), 89–95 (1974).  https://doi.org/10.1007/BF01463793 CrossRefGoogle Scholar
  43. 43.
    Edwards, D.H., Hooper, G., Morgan, J.M., Thomas, G.O.: The quasi-steady regime in critically initiated detonation waves. J. Phys. D 11(13), 2103–2117 (1978).  https://doi.org/10.1088/0022-3727/11/15/008 CrossRefGoogle Scholar
  44. 44.
    Vasil’ev, A.A., Grigor’ev, V.V.: Critical conditions for gas detonation in sharply expanding channels. Combust. Explos. Shock Waves (USSR) 16(5), 579–585 (1980).  https://doi.org/10.1007/BF00794938 CrossRefGoogle Scholar
  45. 45.
    Desbordes, D., Vachon, M.: Critical diameter of diffraction for strong plane detonations. Dynamics of Explosions. Prog. Astronaut. Aeronaut. AIAA 106, 131–143 (1986).  https://doi.org/10.2514/5.9781600865800.0131.0143 Google Scholar
  46. 46.
    Desbordes, D.: Transmission of overdriven plane detonations: critical diameter as a function of cell regularity and size. Dynamics of Explosions. Prog. Astronaut. Aeronaut. AIAA 114, 170–185 (1988).  https://doi.org/10.2514/5.9781600865886.0170.0185 Google Scholar
  47. 47.
    Laberge, S., Knystautas, R., Lee, J.H.S.: Propagation and extinction of detonation waves in tube bundles. Dynamic Aspects of Detonations. Prog. Astronaut. Aeronaut. AIAA 153, 381–396 (1993).  https://doi.org/10.2514/5.9781600866265.0381.0396 Google Scholar
  48. 48.
    Schultz, E., Shepherd, J.E.: Detonation Diffraction Through a Mixture Gradient. GALCIT Report FM2006.008 (2008)Google Scholar
  49. 49.
    Shepherd, J.E., Schultz, E., Akbar, R.: Detonation diffraction. Proceedings of the International Symposium on Shock Waves. Imperial College, London (1999)Google Scholar
  50. 50.
    Gallier, S., Le Palud, F., Pintgen, F., Mével, R., Shepherd, J.E.: Detonation wave diffraction in H2–O2–Ar mixtures. Proc. Combust. Inst. 36, 2781–2789 (2017).  https://doi.org/10.1016/j.proci.2016.06.090 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Aerospace EngineeringNagoya UniversityNagoyaJapan

Personalised recommendations