Advertisement

Shock Waves

pp 1–18 | Cite as

A high-order accurate AUSM\(^+\)-up approach for simulations of compressible multiphase flows with linear viscoelasticity

  • M. RodriguezEmail author
  • E. Johnsen
  • K. G. Powell
Original Article

Abstract

An Eulerian approach for simulations of wave propagation in multiphase, viscoelastic media is developed in the context of the Advection Upstream Splitting Method (AUSM). We extend the AUSM scheme to the five-equation model for simulations of interfaces between gases, liquids, and solids with constitutive relations appropriately transported. In this framework, the solid’s deformations are assumed to be infinitesimally small such that they can be modeled using linear viscoelastic models, e.g., generalized Zener. The Eulerian framework addresses the challenge of calculating strains, more naturally expressed in a Lagrangian framework, by using a hypoelastic model that takes an objective Lie derivative of the constitutive relation to transform strains into velocity gradients. Our approach introduces elastic stresses in the convective fluxes that are treated by generalizing AUSM flux-vector splitting (FVS) to account for the Cauchy stress tensor. We determine an appropriate discretization of non-conservative equations that appear in the five-equation multiphase model with AUSM schemes to prevent spurious oscillations at material interfaces. The framework’s spatial scheme is solution adaptive with a discontinuity sensor discriminating between smooth and discontinuous regions. The smooth regions are computed using explicit high-order central differences. At discontinuous regions (i.e., shocks, material interfaces, and contact surfaces), the convective fluxes are treated using a high-order Weighted Essentially Non-Oscillatory (WENO) scheme with \(\hbox {AUSM}^+\)-up for upwinding. The framework is used to simulate one-dimensional (1D) and two-dimensional (2D) problems that demonstrate the ability to maintain equilibrium interfacial conditions and solve challenging multi-dimensional and multi-material problems.

Keywords

Five-equation model \(\hbox {AUSM}^+\)-up Multi-component Linear viscoelasticity Zener model 

List of symbols

AUSM

Advection Upstream Splitting Method

FVS

Flux-vector splitting

WENO

Weighted Essentially Non-Oscillatory

FDS

Flux-difference splitting

\(\rho \)

Density

\(\alpha ^{(k)}\)

kth component volume fraction

K

Number of materials

\(u_i\)

Velocity vector

p

Pressure

E

Total energy

\(\sigma _{ij}\)

Cauchy stress tensor

\(Q_k\)

Heat flux

\(\kappa \)

Thermal conductivity

\(N_{\mathrm{r}}\)

Number of relaxation frequencies

e

Internal energy

\(e^{(\mathrm {e})}\)

Elastic energy

T

Temperature

NASG

Noble-Abel Stiffened-Gas

EOS

Equation of state

nBbcq

NASG EOS material properties

\(\dot{\epsilon }_{ij}\)

Strain-rate tensor

\(\dot{\epsilon }^{(\mathrm {d})}_{ij}\)

Deviatoric component of \(\dot{\epsilon }_{ij}\)

\(\tau ^{(\mathrm {d})}_{ij}\)

Deviatoric component of \(\sigma _{ij}\)

\(\tau ^{(\mathrm {v})}_{ij}, \tau ^{(\mathrm {e})}_{ij}\)

Viscous and elastic contribution of \(\tau _{ij}\)

\(\mu _{\mathrm {b}}, \mu _{\mathrm {s}}\)

Bulk and shear viscosities

\(\lambda _{\mathrm {r}}\)

Relaxation time

G

Underrelaxed shear modulus

\(G_{\mathrm {r}}\)

Relaxed shear modulus

H(t)

Heaviside function

\(\psi \)

Shear relaxation function

\(\varsigma ^{(l)}\)

lth relaxation shear coefficient

\(\theta ^{(l)}\)

lth relaxation frequency

\(\xi ^{(l)}\)

lth memory variable

\(a^{(k)}\)

kth component speed of sound

\(\zeta _{\mathrm {max}}\)

Maximum wavespeed

\(\nu \)

Courant number

\(\nu _\mu , \nu _\kappa \)

von Neumann numbers

\(F_{i\pm 1/2}\)

Interface flux

\(\phi , \varphi \)

Normal and tangent convective flux

\(\eta _{kk}\)

Normal Cauchy stress tensor flux

\(\eta _{kl}\)

Tangent Cauchy stress tensor flux

\(u_{k,i+1/2}\)

Normal interface velocity

\(u_{l,i+1/2}\)

Tangent interface velocity

MN

Normal and tangent Mach number

\(\mathcal {M}\)

Split Mach number function

\(\mathcal {P}\)

Split pressure function

\(\kappa _{\mathrm {p}}, \kappa _{\mathrm {u}}\)

\(\hbox {AUSM}^+\)-up coefficients

\(\mathcal {A}\)

AUSM discretization operator

TRR

Twin regular reflection–refraction

\(\sigma _{\mathrm {von}}\)

von Mises stress

Notes

Acknowledgements

The authors thank Shahaboddin Alahyari Beig for insightful conversations in the development of this work. This research was inspired by the work of Meng-Sing Liou, who will be missed by the community.

Funding

This work was supported in part by the Ford Foundation Dissertation Writing Fellowship by ONR Grants N00014-12-1-0751 (under Ki-Han Kim) and N00014-18-1-2625 (under Timothy Bentley) and by NSF Grant Number CBET 1253157.

References

  1. 1.
    Reisman, G.E., Wang, Y.C., Brennen, C.E.: Observations of shock waves in cloud cavitation. J. Fluid Mech. 355, 255–283 (1998).  https://doi.org/10.1017/S0022112097007830 CrossRefzbMATHGoogle Scholar
  2. 2.
    Gnanaskandan, A., Mahesh, K.: A numerical method to simulate turbulent cavitating flows. Int. J. Multiph. Flow 70, 22–34 (2015).  https://doi.org/10.1016/j.ijmultiphaseflow.2014.11.009 MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ganesh, H., Mäkiharju, S.A., Ceccio, S.L.: Bubbly shock propagation as a mechanism for sheet-to-cloud transition of partial cavities. J. Fluid Mech. 802, 37–78 (2016).  https://doi.org/10.1017/jfm.2016.425 MathSciNetCrossRefGoogle Scholar
  4. 4.
    Liou, M.S., Steffen, C.J.: A new flux splitting scheme. J. Comput. Phys. 107, 23–39 (1993).  https://doi.org/10.1006/jcph.1993.1122 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Liou, M.S.: A sequel to AUSM, Part II: AUSM\(^{+}\)-up for all speeds. J. Comput. Phys. 214, 137–170 (2006).  https://doi.org/10.1016/j.jcp.2005.09.020 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Shima, E., Kitamura, K.: Parameter-free simple low-dissipation AUSM-family scheme for all speeds. AIAA J. 49, 1693–1709 (2011).  https://doi.org/10.2514/1.J050905 CrossRefGoogle Scholar
  7. 7.
    Paillère, H., Corre, C., García Cascales, J.R.: On the extension of the AUSM\(^{+}\) scheme to compressible two-fluid models. Comput. Fluids 32, 891–916 (2003).  https://doi.org/10.1016/S0045-7930(02)00021-X MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Evje, S., Fjelde, K.K.: On a rough AUSM scheme for a one-dimensional two-phase model. Comput. Fluids 32, 1497–1530 (2003).  https://doi.org/10.1016/S0045-7930(02)00113-5 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chang, C.H., Liou, M.S.: A new approach to the simulation of compressible multifluid flows with AUSM\(^{+}\) scheme. 16th AIAA Computational Fluid Dynamics Conference, Orlando, FL, AIAA Paper 2003-4107 (2003).  https://doi.org/10.2514/6.2003-4107
  10. 10.
    Chang, C.H., Liou, M.S.: A robust and accurate approach to computing compressible multiphase flow: Stratified flow model and AUSM\(^{+}\)-up scheme. J. Comput. Phys. 225, 840–873 (2007).  https://doi.org/10.1016/j.jcp.2007.01.007 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Liou, M.S., Chang, C.H., Nguyen, L., Theofanous, T.G.: How to solve compressible multifluid equations: A simple, robust, and accurate method. AIAA J. 46, 2345–2356 (2008).  https://doi.org/10.2514/1.34793 CrossRefGoogle Scholar
  12. 12.
    Kitamura, K., Liou, M.S., Chang, C.H.: Extension and comparative study of AUSM-family schemes for compressible multiphase flow simulations. Commun. Comput. Phys. 16, 632–674 (2014).  https://doi.org/10.4208/cicp.020813.190214a MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gavrilyuk, S.L., Favrie, N., Saurel, R.: Modelling wave dynamics of compressible elastic materials. J. Comput. Phys. 227, 2941–2969 (2008).  https://doi.org/10.1016/j.jcp.2007.11.030 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Barton, P.T., Obadia, B., Drikakis, D.: A conservative level-set based method for compressible solid/fluid problems on fixed grids. J. Comput. Phys. 230, 7867–7890 (2011).  https://doi.org/10.1016/j.jcp.2011.07.008 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Barton, P.T., Deiterding, R., Meiron, D., Pullin, D.: Eulerian adaptive finite-difference method for high-velocity impact and penetration problems. J. Comput. Phys. 240, 76–99 (2013).  https://doi.org/10.1016/j.jcp.2013.01.013 MathSciNetCrossRefGoogle Scholar
  16. 16.
    López Ortega, A., Lombardini, M., Barton, P., Pullin, D., Meiron, D.: Richtmyer Meshkov instability for elasticplastic solids in converging geometries. J. Mech. Phys. Solids 76, 291–324 (2015).  https://doi.org/10.1016/j.jmps.2014.12.002 MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ndanou, S., Favrie, N., Gavrilyuk, S.: Multi-solid and multi-fluid diffuse interface model: applications to dynamic fracture and fragmentation. J. Comput. Phys. 295, 523–555 (2015).  https://doi.org/10.1016/j.jcp.2015.04.024 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Rodriguez, M., Johnsen, E.: A high-order accurate five-equations compressible multiphase approach for viscoelastic fluids and solids with relaxation and elasticity. J. Comput. Phys. 379, 70–90 (2019).  https://doi.org/10.1016/j.jcp.2018.10.035 MathSciNetCrossRefGoogle Scholar
  19. 19.
    Eringen, A.C.: Nonlinear Theory of Continuous Media. McGraw-Hill, New York (1962)Google Scholar
  20. 20.
    Luo, H., Baum, J.D., Löhner, R.: On the computation of multi-material flows using ALE formulation. J. Comput. Phys. 194, 304–328 (2004).  https://doi.org/10.1016/j.jcp.2003.09.026 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    McGurn, M.T., Ruggirello, K.P., DesJardin, P.E.: An Eulerian-Lagrangian moving immersed interface method for simulating burning solids. J. Comput. Phys. 241, 364–387 (2013).  https://doi.org/10.1016/j.jcp.2013.01.045 MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Alahyari Beig, S., Johnsen, E.: Maintaining interface equilibrium conditions in compressible multiphase flows using interface capturing. J. Comput. Phys. 302, 548–566 (2015).  https://doi.org/10.1016/j.jcp.2015.09.018 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    He, Z., Zhang, Y., Li, X., Tian, B.: Preventing numerical oscillations in the flux-split based finite difference method for compressible flows with discontinuities. Int. J. Numer. Methods Fluids 80, 306–316 (2016).  https://doi.org/10.1002/fld.4080 MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Saurel, R., Abgrall, R.: A simple method for compressible multifluid flows. SIAM J. Sci. Comput. 21, 1115–1145 (1999).  https://doi.org/10.1137/S1064827597323749 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Johnsen, E., Colonius, T.: Implementation of WENO schemes in compressible multicomponent flow problems. J. Comput. Phys. 219, 715–732 (2006).  https://doi.org/10.1016/j.jcp.2006.04.018 MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Scandaliato, A.L., Liou, M.S.: AUSM-based high-order solution for Euler equations. Commun. Comput. Phys. 12, 1096–1120 (2012).  https://doi.org/10.4208/cicp.250311.081211a CrossRefzbMATHGoogle Scholar
  27. 27.
    Le Métayer, O., Saurel, R.: The Noble-Abel Stiffened-Gas equation of state. Phys. Fluids 28, 046102 (2016).  https://doi.org/10.1063/1.4945981 CrossRefGoogle Scholar
  28. 28.
    Harlow, F.H., Amsden, A.A.: Fluid Dynamics. Los Alamos Scientific Laboratory, Los Alamos (1971)zbMATHGoogle Scholar
  29. 29.
    Le Métayer, O., Massoni, J., Saurel, R.: Modelling evaporation fronts with reactive Riemann solvers. J. Comput. Phys. 205, 567–610 (2005).  https://doi.org/10.1016/j.jcp.2004.11.021 MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Zener, C.: Mechanical behavior of high damping metals. J. Appl. Phys. 18, 1022–1025 (1947).  https://doi.org/10.1063/1.1697572 CrossRefGoogle Scholar
  31. 31.
    Carcione, J.M.: Wave Fields in Real Media. Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media, 3rd edn. Elsevier, Amsterdam (2014).  https://doi.org/10.1016/C2013-0-18893-9
  32. 32.
    Fung, Y.C.: Biomechanics. Springer, New York (1993).  https://doi.org/10.1007/978-1-4757-2257-4
  33. 33.
    Wineman, A.S.: Mechanical Response of Polymers: An Introduction. Cambridge University Press, Cambridge (2000)Google Scholar
  34. 34.
    Altmeyer, G., Rouhaud, E., Panicaud, B., Roos, A., Kerner, R., Wang, M.: Viscoelastic models with consistent hypoelasticity for fluids undergoing finite deformations. Mech. Time-Depend. Mater. 19, 375–395 (2015).  https://doi.org/10.1007/s11043-015-9269-5 CrossRefGoogle Scholar
  35. 35.
    Lombard, B., Piraux, J.: Numerical modeling of transient two-dimensional viscoelastic waves. J. Comput. Phys. 230, 6099–6114 (2011).  https://doi.org/10.1016/j.jcp.2011.04.015 MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Allaire, G., Clerc, S., Kokh, S.: A five-equation model for the simulation of interfaces between compressible fluids. J. Comput. Phys. 181, 577–616 (2002).  https://doi.org/10.1006/jcph.2002.7143 MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Murrone, A., Guillard, H.: A five equation reduced model for compressible two phase flow problems. J. Comput. Phys. 202, 664–698 (2005).  https://doi.org/10.1016/j.jcp.2004.07.019 MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Perigaud, G., Saurel, R.: A compressible flow model with capillary effects. J. Comput. Phys. 209, 139–178 (2005).  https://doi.org/10.1016/j.jcp.2005.03.018 MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Shukla, R.K., Pantano, C., Freund, J.B.: An interface capturing method for the simulation of multi-phase compressible flows. J. Comput. Phys. 229, 7411–7439 (2010).  https://doi.org/10.1016/j.jcp.2010.06.025 MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Henry de Frahan, M.T., Varadan, S., Johnsen, E.: A new limiting procedure for discontinuous Galerkin methods applied to compressible multiphase flows with shocks and interfaces. J. Comput. Phys. 280, 489–509 (2015).  https://doi.org/10.1016/j.jcp.2014.09.030
  41. 41.
    Liou, M.S.: A sequel to AUSM: AUSM\(^{+}\). J. Comput. Phys. 129, 364–382 (1996).  https://doi.org/10.1006/jcph.1996.0256 MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Liou, M.S.: On a new class of flux splittings. In: Napolitano, M., Sabetta, F. (eds.) Thirteenth International Conference on Numerical Methods in Fluid Dynamics: Proceedings of the Conference Held at the Consiglio Nazionale delle Ricerche Rome, Italy. Lecture Notes in Physics, vol. 414, pp. 115–119. Springer, Berlin (1992).  https://doi.org/10.1007/3-540-56394-6_199
  43. 43.
    Abgrall, R.: How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach. J. Comput. Phys. 125, 150–160 (1996).  https://doi.org/10.1006/jcph.1996.0085 MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Shyue, K.M.: An efficient shock-capturing algorithm for compressible multicomponent problems. J. Comput. Phys. 142, 208–242 (1998).  https://doi.org/10.1006/jcph.1998.5930 MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Johnsen, E.: On the treatment of contact discontinuities using WENO schemes. J. Comput. Phys. 230, 8665–8668 (2011).  https://doi.org/10.1016/j.jcp.2011.08.017 MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Fedkiw, R.P., Marquina, A., Merriman, B.: An isobaric fix for the overheating problem in multimaterial compressible flows. J. Comput. Phys. 148, 545–578 (1999).  https://doi.org/10.1006/jcph.1998.6129 MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Haas, J.F., Sturtevant, B.: Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J. Fluid Mech. 181, 41–76 (1987).  https://doi.org/10.1017/S0022112087002003 CrossRefGoogle Scholar
  48. 48.
    Quirk, J.J., Karni, S.: On the dynamics of a shock–bubble interaction. J. Fluid Mech. 318, 129–163 (1996).  https://doi.org/10.1017/S0022112096007069 CrossRefzbMATHGoogle Scholar
  49. 49.
    Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the Ghost Fluid Method). J. Comput. Phys. 152, 457–492 (1999).  https://doi.org/10.1006/jcph.1999.6236 MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Don, W.S., Quillen, C.B.: Numerical simulation of shock-cylinder interactions: I. Resolution. J. Comput. Phys. 122, 244–265 (1995).  https://doi.org/10.1006/jcph.1995.1211 CrossRefzbMATHGoogle Scholar
  51. 51.
    Wang, L., Currao, G.M., Han, F., Neely, A.J., Young, J., Tian, F.B.: An immersed boundary method for fluidstructure interaction with compressible multiphase flows. J. Comput. Phys. 346, 131–151 (2017).  https://doi.org/10.1016/j.jcp.2017.06.008 MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Henderson, L.F., Colella, P., Puckett, E.G.: On the refraction of shock waves at a slow–fast gas interface. J. Fluid Mech. 224, 1–27 (1991).  https://doi.org/10.1017/S0022112091001623 CrossRefGoogle Scholar
  53. 53.
    Theofanous, T.G., Li, G.J., Dinh, T.N.: Aerobreakup in rarefied supersonic gas flows. J. Fluids Eng. 126, 516–527 (2004).  https://doi.org/10.1115/1.1777234 CrossRefGoogle Scholar
  54. 54.
    Meng, J.C., Colonius, T.: Numerical simulation of the aerobreakup of a water droplet. J. Fluid Mech. 835, 1108–1135 (2018).  https://doi.org/10.1017/jfm.2017.804 MathSciNetCrossRefGoogle Scholar
  55. 55.
    Niu, Y.Y., Lin, Y.C., Chang, C.H.: A further work on multi-phase two-fluid approach for compressible multi-phase flows. Int. J. Numer. Methods Fluids 58, 879–896 (2008).  https://doi.org/10.1002/fld.1773 MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Pandare, A.K., Luo, H.: A robust and efficient finite volume method for compressible inviscid and viscous two-phase flows. J. Comput. Phys. 371, 67–91 (2018).  https://doi.org/10.1016/j.jcp.2018.05.018 MathSciNetCrossRefGoogle Scholar
  57. 57.
    Pandolfi, M., D’Ambrosio, D.: Numerical instabilities in upwind methods: Analysis and cures for the “Carbuncle” phenomenon. J. Comput. Phys. 166, 271–301 (2001).  https://doi.org/10.1006/jcph.2000.6652 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentUniversity of MichiganAnn ArborUSA
  2. 2.Aerospace Engineering DepartmentUniversity of MichiganAnn ArborUSA

Personalised recommendations