Advertisement

Shock Waves

, Volume 28, Issue 5, pp 1097–1107 | Cite as

Numerical investigation of the impact of tailored driver gases and driver inserts on shock tube flows

  • D. Coombs
  • B. Akih-Kumgeh
Original Article
  • 54 Downloads

Abstract

Presented is a numerical study of the effects of imperfect driver gas tailoring and the use of a driver section insert on the flow field within the shock tube. Two-dimensional axisymmetric simulations of a shock tube are conducted with pure argon as the driven gas and four \(\hbox {He/N}_2\) mixtures representing different tailoring conditions. The second part of the study investigates the use of a profiled driver insert with two \(\hbox {He/N}_2\) driver gas mixtures to minimize the pressure rise in the test section such as that resulting from over-tailored driver mixtures. The chemical kinetic implications of imperfectly tailored driver gas mixtures on the interpretation of shock tube experiments are explored through simulations of propanol ignition with pressure and temperature changes prescribed based on the simulation results. The simulations show that imperfect tailoring toward under-tailored mixtures is more detrimental to kinetic studies in the post-reflected shock region than over-tailoring. The least compromising situation in test conditions is observed for a mildly over-tailored condition with 25% of nitrogen as opposed to the tailored value of 20%. The numerical results further show that the combination of the driver insert and slightly over-tailored driver mixture leads to longer test times. The study seeks to address problems of available test times and accuracy of shock tube reactor conditions that are crucial to the use of shock tube data for validation of chemical kinetic models.

Keywords

Shock tube Contact surface tailoring Shock tube driver inserts Shock tube flow fields Ignition delay times 

Notes

References

  1. 1.
    Gaydon, A.G., Hurle, I.R.: The Shock Tube in High-Temperature Chemical Physics. Reinhold, New York (1963)Google Scholar
  2. 2.
    Belford, R., Strehlow, R.: Shock tube technique in chemical kinetics. Annu. Rev. Phys. Chem. 20, 247–272 (1969).  https://doi.org/10.1146/annurev.pc.20.100169.001335 CrossRefGoogle Scholar
  3. 3.
    Tsang, W., Lifshitz, A.: Shock tube techniques in chemical kinetics. Annu. Rev. Phys. Chem. 41, 559–599 (1990).  https://doi.org/10.1146/annurev.pc.41.100190.003015 CrossRefGoogle Scholar
  4. 4.
    Michael, J., Lim, K.: Shock tube techniques in chemical kinetics. Annu. Rev. Phys. Chem. 44, 429–458 (1993).  https://doi.org/10.1146/annurev.pc.44.100193.002241 CrossRefGoogle Scholar
  5. 5.
    Hanson, R.: Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems. Proc. Combust. Inst. 33, 1–40 (2011).  https://doi.org/10.1016/j.proci.2010.09.007 CrossRefGoogle Scholar
  6. 6.
    Hanson, R., Davidson, D.: Recent advances in laser absorption and shock tube methods for studies of combustion chemistry. Prog. Energy Combust. Sci. 44, 103–114 (2014).  https://doi.org/10.1016/j.pecs.2014.05.001 CrossRefGoogle Scholar
  7. 7.
    Davidson, D.F., Hanson, R.K.: Interpreting shock tube ignition data. Int. J. Chem. Kinet. 36(9), 510–523 (2004).  https://doi.org/10.1002/kin.20024 CrossRefGoogle Scholar
  8. 8.
    Chaos, M., Dryer, F.L.: Chemical-kinetic modeling of ignition delay: considerations in interpreting shock tube data. Int. J. Chem. Kinet. 42(3), 143–150 (2010).  https://doi.org/10.1002/kin.20471 CrossRefGoogle Scholar
  9. 9.
    Glass, I.L., Sislian, J.P.: Nonstationary Flow and Shock Waves. Clarendon, Oxford (1994)Google Scholar
  10. 10.
    Nishida, M.: Shock tubes. In: Ben-Dor, G., Igra, O., Elperin, T. (eds.) Handbook of Shock Waves, chap. 4.1, pp. 553–585. Academic Press, Burlington (2001).  https://doi.org/10.1016/B978-012086430-0/50012-9
  11. 11.
    White, D.R.: Influence of diaphragm opening time on shock-tube flow. J. Fluid Mech. 4, 585 (1958).  https://doi.org/10.1017/S0022112058000677 CrossRefzbMATHGoogle Scholar
  12. 12.
    Outa, E., Tajima, K., Hayakawa, K.: Shock tube flow influence by diaphragm opening (two dimensional flow near the diaphragm). In: 10th International Symposium on Shock Tubes, pp. 312–319 (1975)Google Scholar
  13. 13.
    Petersen, E.L., Hanson, R.K.: Nonideal effects behind reflected shock waves in a high-pressure shock tube. Shock Waves 10, 405–420 (2001).  https://doi.org/10.1007/PL00004051 CrossRefGoogle Scholar
  14. 14.
    Grogan, K., Ihme, M.: Regimes describing shock boundary layer interaction and ignition in shock tubes. Proc. Combust. Inst. 36, 2927–2935 (2017).  https://doi.org/10.1016/j.proci.2016.06.078 CrossRefGoogle Scholar
  15. 15.
    Melguizo-Gavilanes, J., Bauwens, L.: A comparison between constant volume induction times and results from spatially resolved simulation of ignition behind reflected shocks: implications for shock tube experiments. Shock Waves 23, 221–231 (2013).  https://doi.org/10.1007/s00193-012-0403-x CrossRefGoogle Scholar
  16. 16.
    Hong, Z., Pang, G.A., Vasu, S.S., Davidson, D.F., Hanson, R.K.: The use of driver inserts to reduce non-ideal pressure variations behind reflected shock waves. Shock Waves 19, 113–123 (2009).  https://doi.org/10.1007/s00193-009-0205-y CrossRefGoogle Scholar
  17. 17.
    Campbell, M.F., Parise, T., Tulgestke, A.M., Spearrin, R.M., Davidson, D.F., Hanson, R.K.: Strategies for obtaining long constant-pressure test times in shock tubes. Shock Waves 25(6), 651–665 (2015).  https://doi.org/10.1007/s00193-015-0596-x
  18. 18.
    Poling, B.E., O’Connell, J.P., Prausnitz, J.M.: The Properties of Gases and Liquids, 5th edn. McGraw-Hill, New York (2001). ISBN 0071189718Google Scholar
  19. 19.
    McBride, B., Gordon, S., Reno, M.: Coefficients for calculating thermodynamic and transport properties of individual species, Technical Memorandum 4513, NASA (1993)Google Scholar
  20. 20.
    OpenCFD: OpenFOAM User Guide, 2.3.1 edn. OpenFOAM Foundation Ltd, London (2014)Google Scholar
  21. 21.
    Greenshields, C.J., Weller, H.G., Gasparini, L., Reese, J.M.: Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows. Int. J. Numer. Methods Fluids 63, 1–21 (2010).  https://doi.org/10.1002/fld.2069 MathSciNetzbMATHGoogle Scholar
  22. 22.
    Mirels, H.: Laminar boundary layer behind shock advancing into stationary fluid. NACA TN-3401 (1955)Google Scholar
  23. 23.
    Brouillette, M.: The Richtmyer–Meshkov instability. Annu. Rev. Fluid Mech. 34, 445–468 (2002).  https://doi.org/10.1146/annurev.fluid.34.090101.162238 MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Goodwin, D.G., Moffat, H.K., Speth, R.L.: Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics and Transport Processes. Caltech, Pasadena (2015)Google Scholar
  25. 25.
    Johnson, M., Goldsborough, S., Serinyel, Z., O’Toole, P., Larkin, E., O’Malley, G., Curran, H.: A shock tube study of n- and iso-propanol ignition. Energy Fuels 23, 5886–5898 (2009).  https://doi.org/10.1021/ef900726j CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Syracuse UniversitySyracuseUSA

Personalised recommendations