Advertisement

Shock Waves

, Volume 29, Issue 1, pp 51–71 | Cite as

A front tracking method capturing field features accurately for one-dimensional flows

  • Y. Cao
  • Z. WangEmail author
  • T. Hong
Original Article

Abstract

Capturing all flow field features sharply and accurately, including contact interfaces, shocks, and rarefaction heads and tails, is still a challenging task in computational fluid dynamics. Conventional front capturing methods often suffer from spurious oscillations and non-physical front blurring. Moreover, positions of interfaces and shock waves are very difficult to capture correctly when there are strong rarefaction waves. To overcome these difficulties, a new front tracking method for one-dimensional flows is proposed in this work, in which all the wave fronts, including interfaces, shocks, and rarefaction heads and tails, are tracked by nodes explicitly. Numerical results show that it can track fronts accurately and sharply without front smearing, spurious oscillations near fronts, or wall overheating for one-dimensional flows, even for problems with strong rarefaction waves.

Keywords

Front tracking method Spurious oscillations Non-physical smearing Wall overheating 

Notes

Acknowledgements

This work is supported by China’s Defence Industrial Technology Development Program B1520132012. Great thanks to all the referees reviewing this paper for their valuable comments.

References

  1. 1.
    Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996).  https://doi.org/10.1006/jcph.1996.0130 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD Thesis, Imperial College, University of London (1996)Google Scholar
  3. 3.
    Shen, Z., Yan, W., Yuan, G.: A robust HLLC-type Riemann solver for strong shock. J. Comput. Phys. 309, 185–206 (2016).  https://doi.org/10.1016/j.jcp.2016.01.001 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981).  https://doi.org/10.1016/0021-9991(81)90145-5 CrossRefzbMATHGoogle Scholar
  5. 5.
    Sethian, J.A.: Theory, algorithm, and applications of level set methods for propagating interfaces. Acta Numer. 5, 309–395 (1996).  https://doi.org/10.1017/S0962492900002671 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Hui, W.H., Kudriakov, S.: On wall overheating and other computational difficulties of shock-capturing methods. Comput. Fluid Dyn. J. 10(2), 192–209 (2001)Google Scholar
  7. 7.
    Lee, B.J., Toro, E.F., Castro, C.E., Nikiforakis, N.: Adaptive Osher-type scheme for the Euler equations with high nonlinear equations of state. J. Comput. Phys. 246, 165–183 (2013).  https://doi.org/10.1016/j.jcp.2013.03.046 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Banks, J.W.: On exact conservation for the Euler equations with complex equations of state. Commun. Comput. Phys. 8, 995 (2010).  https://doi.org/10.4208/cicp.090909.100310a MathSciNetzbMATHGoogle Scholar
  9. 9.
    Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos National Laboratory (1973)Google Scholar
  10. 10.
    Ren, X., Chunwei, G.: Application of a discontinuous Galerkin method on the compressible flow in the transonic axial compressor. Appl. Therm. Eng. 93, 707–717 (2016).  https://doi.org/10.1016/j.applthermaleng.2015.10.048 CrossRefGoogle Scholar
  11. 11.
    Maire, P.-H.: A high-order cell-centered Lagrangian scheme for compressible fluid flows in two-dimensional cylindrical geometry. J. Comput. Phys. 228, 6882–6915 (2009).  https://doi.org/10.1016/j.jcp.2009.06.018 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dumbser, M.: Arbitrary-Lagrangian–Eulerian ADER-WENO finite volume schemes with time-accurate local time stepping for hyperbolic conservation laws. Comput. Methods Appl. Mech. Eng. 280, 57–83 (2014).  https://doi.org/10.1016/j.cma.2014.07.019 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Boscheri, W., Dumbser, M., Zonotti, O.: High order cell-centered Lagrangian-type finite volume schemes with time-accurate local time stepping on unstructured triangular meshes. J. Comput. Phys. 291, 120–150 (2015).  https://doi.org/10.1016/j.jcp.2015.02.052 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Sornborger, A., Fryxell, B., Olson, K., MacNeice, P.: An Eulerian PPM & PIC code for cosmological hydrodynamics. arXiv:astro-ph/9608019v1 (1996)
  15. 15.
    Glimm, J., Li, X., Liu, Y., Xu, Z., Zhao, N.: Conservative front tracking with improved accuracy. SIAM J. Numer. Anal. 41(5), 1926–1947 (2003).  https://doi.org/10.1137/S0036142901388627 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Shu, C.-W.: High Order ENO and WENO Schemes for Computational Fluid Dynamics. In: Barth, T.J., Deconinck, H. (eds.) High-Order Methods for Computational Physics. Lecture Notes in Computational Science and Engineering, vol. 9, pp. 439–582. Springer, Berlin (1999).  https://doi.org/10.1007/978-3-662-03882-6_5
  17. 17.
    Dumbser, M., Hidalgo, A., Zanotti, O.: High order space-time adaptive ADER-WENO finite volume schemes for non-conservative hyperbolic systems. Comput. Methods Appl. Mech. Eng. 268, 359–387 (2014).  https://doi.org/10.1016/j.cma.2013.09.022 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Mattsson, A.E., Rider, W.J.: Artificial viscosity: back to the basics. Int. J. Numer. Methods Fluids 77(7), 400–417 (2015).  https://doi.org/10.1002/fld.3981 MathSciNetCrossRefGoogle Scholar
  19. 19.
    Li, J., Tian, B., Wang, S.: Dissipation matrix and artificial heat conduction for Godunov-type schemes of compressible fluid flows. Int. J. Numer. Methods Fluids 84(2), 57–75 (2016).  https://doi.org/10.1002/fld.4340 MathSciNetCrossRefGoogle Scholar
  20. 20.
    Pirozzoli, S.: Numerical methods for high-speed flows. Annu. Rev. Fluid Mech. 43, 163–194 (2011).  https://doi.org/10.1146/annurev-fluid-122109-160718 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Emmons, H.W.: The numerical solution of compressible fluid flow problems. Technical Report NACA-TN 932, NASA (1944)Google Scholar
  22. 22.
    Moretti, G., Abbett, M.: A time-dependent computational method for blunt body flows. AIAA J. 4, 2136–2141 (1966).  https://doi.org/10.2514/3.3867 CrossRefzbMATHGoogle Scholar
  23. 23.
    Richtmyer, R.D., Morton, K.W.: Difference Methods for Initial-Value Problems, 2nd edn. Interscience, New York (1967)zbMATHGoogle Scholar
  24. 24.
    Chern, I.-L., Glimm, J., McBryan, O., Plohr, B., Yaniv, S.: Front tracking for gas dynamics. J. Comput. Phys. 62, 83–110 (1986).  https://doi.org/10.1016/0021-9991(86)90101-4 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Lepage, C.Y., Hui, W.H.: A shock-adaptive Godunov scheme based on the generalised Lagrangian formulation. J. Comput. Phys. 122, 291–299 (1995).  https://doi.org/10.1006/jcph.1995.1214 CrossRefzbMATHGoogle Scholar
  26. 26.
    Paciorri, R., Bonfiglioli, A.: A shock-fitting technique for 2D unstructured grids. Comput. Fluids 38, 715–726 (2009).  https://doi.org/10.1016/j.compfluid.2008.07.007 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Bonfiglioli, A., Grottadaurea, M., Paciorri, R., Sabetta, F.: An unstructured, three-dimensional, shock-fitting solver for hypersonic flows. Comput. Fluids 73, 162–174 (2013).  https://doi.org/10.1016/j.compfluid.2012.12.022 CrossRefzbMATHGoogle Scholar
  28. 28.
    Bonfiglioli, A., Paciorri, R., Campoli, L.: Unsteady shock-fitting for unstructured grids. Int. J. Numer. Methods Fluids 81, 245–261 (2016).  https://doi.org/10.1002/fld.4183 MathSciNetCrossRefGoogle Scholar
  29. 29.
    Lee, T.K., Zhong, X., Gong, L., Quinn, R.: Hypersonic aerodynamic heating prediction using weighted essentially nonoscillatory schemes. J. Spacecr. Rockets 40(2), 294–298 (2003).  https://doi.org/10.2514/2.3946 CrossRefGoogle Scholar
  30. 30.
    de Assuno, T.L., de Paula, T., Paulo, G.: Preliminary study of aerodynamic heating at hypersonic vehicle 14-x. In: 14th Brazilian Congress of Thermal Sciences and Engineering, Rio de Janeiro, Brazil, 18–22 Nov (2012)Google Scholar
  31. 31.
    Suponitsky, V., Froese, A., Barsky, S.: Richtmyer–Meshkov instability of a liquid-gas interface driven by a cylindrical imploding pressure wave. Comput. Fluids 89, 1–19 (2014).  https://doi.org/10.1016/j.compfluid.2013.10.031 CrossRefzbMATHGoogle Scholar
  32. 32.
    Kudriakov, S., Hui, W.H.: On a new defect of shock-capturing methods. J. Comput. Phys. 227, 2105–2117 (2008).  https://doi.org/10.1016/j.jcp.2007.10.014 MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Menikoff, R., Plohr, B.J.: The Riemann problem for fluid flow of real materials. Rev. Mod. Phys. 61(1), 75–130 (1989).  https://doi.org/10.1103/RevModPhys.61.75 MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Kamm, J.R.: An exact, compressible one-dimensional Riemann solver for general, convex equations of state. Technical report LA-UR-15-21616, Los Alamos National. Laboratory (2015).  https://doi.org/10.2172/1172220
  35. 35.
    Mignone, A.: High-order conservative reconstruction schemes for finite volume methods in cylindrical and spherical coordinates. J. Comput. Phys. 270, 784–814 (2014).  https://doi.org/10.1016/j.jcp.2014.04.001 MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–398 (1983).  https://doi.org/10.1016/0021-9991(83)90136-5 MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Maire, P.-H., Abgrall, R., Breil, J., Ovadia, J.: A cell-centered Lagrangian scheme for two-dimensional compressing flow problems. SIAM J. Sci. Comput. 29(4), 1781–1824 (2007).  https://doi.org/10.1137/050633019 MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd edn. Springer, Berlin (2009).  https://doi.org/10.1007/b79761 CrossRefzbMATHGoogle Scholar
  39. 39.
    Tang, H., Liu, T.: A note on the conservative schemes for the Euler equations. J. Comput. Phys. 218, 451–459 (2006).  https://doi.org/10.1016/j.jcp.2006.03.035 CrossRefzbMATHGoogle Scholar
  40. 40.
    Luo, H., Baum, J.D., Löhner, R.: On the computation of multi-material flows using ALE formulation. J. Comput. Phys. 194, 304–328 (2004).  https://doi.org/10.1016/j.jcp.2003.09.026 MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes, II. J. Comput. Phys. 83(1), 32–78 (1989).  https://doi.org/10.1016/0021-9991(89)90222-2 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Applied Physics and Computational MathematicsBeijingChina

Personalised recommendations