Advertisement

Shock Waves

pp 1–17 | Cite as

Hybridized SLAU2–HLLI and hybridized AUSMPW\(+\)–HLLI Riemann solvers for accurate, robust, and efficient magnetohydrodynamics (MHD) simulations, part I: one-dimensional MHD

  • K. Kitamura
  • D. S. Balsara
Original Article
  • 119 Downloads

Abstract

SLAU2 and AUSMPW\(+\), both categorized as AUSM-type Riemann solvers, have been extensively developed in gasdynamics. They are based on a splitting of the numerical flux into advected and pressure parts. In this paper, these two Riemann solvers have been extended to magnetohydrodynamics (MHD). The SLAU2 Riemann solver has the favorable attribute that its dissipation for low-speed flows scales as \(O(M^{2})\), where M is the Mach number. This is the physical scaling required for low-speed flows, and the dissipation in SLAU2 for MHD is engineered to have this low Mach number scaling. The AUSMPW\(+\), when its pressure flux is replaced with that of SLAU2, has the same low Mach number scaling. At higher Mach numbers, however, the pressure-split Riemann solvers were found not to function well for some MHD Riemann problems, despite the fact that they were engineered to have a dissipation that scales as \(O(\vert M\vert )\) for high Mach number flows. The HLLI Riemann solver (Dumbser and Balsara in J Comput Phys 304:275–319, 2016) has a dissipation that scales as \(O(\vert M\vert )\), which makes it unsuitable for low Mach number flows. However, it has very favorable performance for higher Mach number MHD flows. Since the two families of Riemann solvers perform very well over a range of intermediate Mach numbers, the best way to benefit from the mutually complementary strengths of both these Riemann solvers is to hybridize between them. The result is an all-speed Riemann solver for MHD. We, therefore, document hybridized SLAU2–HLLI and AUSMPW\(+\)–HLLI Riemann solvers. The hybrid Riemann solvers suppress the oscillations that appeared in single-solver solutions, and they also preserve contact discontinuities, as well as Alfvén waves, very well. Furthermore, their better resolution at low speeds has been demonstrated. We also present several stringent one-dimensional test problems.

Keywords

SLAU2 AUSMPW\(+\) HLLI MHD Euler fluxes 

Notes

Acknowledgements

This work has been conducted while the first author (K. Kitamura) was visiting at the University of Notre Dame. We would like to express gratitude to the University of Notre Dame for hosting the first author and also to Yokohama National University for financial support. The first author also thanks Shigenobu Hirose and Takashi Minoshima at JAMSTEC (Japan Agency for Marine-Earth Science and Technology), Japan (introduced through Eiji Shima, JAXA), and Nishant M. Narechania at University of Toronto, Canada, and Dan Hori at Nagoya University, Japan, for providing him with fundamental knowledge on astrophysics and nuclear fusion, respectively. Last but not least, he really appreciates Meng-Sing Liou at NASA Glenn Research Center for his continuous discussions on SLAU2, one of AUSM-family fluxes. The second author (DSB) acknowledges support via NSF Grants NSF-DMS-1361197, NSF-ACI-1533850, NSF-DMS-1622457, and NSF-ACI-1713765. Several simulations were performed on a cluster at UND that is run by the Center for Research Computing. Computer support on NSF’s XSEDE and Blue Waters computing resources is also acknowledged.

References

  1. 1.
    Esquivel, A., Raga, A.C., Cantó, J., Rodríguez-González, A., López-Cámara, D., Velázquez, P.F., De Colle, F.: Model of Mira’s cometary head/tail entering the local bubble. Astrophys. J. 725, 1466–1475 (2010).  https://doi.org/10.1088/0004-637X/725/2/1466 CrossRefGoogle Scholar
  2. 2.
    Ohnishi, N., Kotake, K., Yamada, S.: Numerical analysis on standing accretion shock instability with neutrino heating in the supernova cores. Astrophys. J. 641(2), 1018–1028 (2006).  https://doi.org/10.1086/500554 CrossRefGoogle Scholar
  3. 3.
    Hanawa, T., Mikami, H., Matsumoto, T.: Improving shock irregularities based on the characteristics of the MHD equations. J. Comput. Phys. 227, 7952–7976 (2008).  https://doi.org/10.1016/j.jcp.2008.05.006 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Poggie, J., Gaitonde, D.V.: Magnetic control of flow past a blunt body: numerical validation and exploration. Phys. Fluids 14(5), 1720–1731 (2002).  https://doi.org/10.1063/1.1465424 CrossRefzbMATHGoogle Scholar
  5. 5.
    Burr, U., Barleon, L., Müller, U., Tsinober, A.: Turbulent transport of momentum and heat in magnetohydrodynamic rectangular duct flow with strong sidewall jets. J. Fluid Mech. 406, 247–279 (2000).  https://doi.org/10.1017/S0022112099007405 CrossRefzbMATHGoogle Scholar
  6. 6.
    Godunov, S.K.: A finite difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics. Mat. Sb. Izd. Mosk. Mat. Obs. 47(3), 271–306 (1959)zbMATHGoogle Scholar
  7. 7.
    van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32(1), 101–136 (1979).  https://doi.org/10.1016/0021-9991(79)90145-1 CrossRefzbMATHGoogle Scholar
  8. 8.
    Colella, P.: A direct Eulerian MUSCL scheme for gas dynamics. SIAM J. Sci. Stat. Comput. 6(1), 104–117 (1985).  https://doi.org/10.1137/0906009 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Colella, P., Woodward, P.R.: The Piecewise Parabolic Method (PPM) for gas-dynamical simulations. J. Comput. Phys. 54, 174–201 (1984).  https://doi.org/10.1016/0021-9991(84)90143-8
  10. 10.
    Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357–372 (1981).  https://doi.org/10.1016/0021-9991(81)90128-5 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Harten, A., Hyman, J.M.: Self adjusting grid methods for one-dimensional hyperbolic conservation laws. J. Comput. Phys. 50, 235–269 (1983).  https://doi.org/10.1016/0021-9991(83)90066-9 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Harten, A., Lax, P.D., Van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25(1), 35–61 (1983).  https://doi.org/10.1137/1025002 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Einfeldt, B.: On Godunov-type methods for gas dynamics. SIAM J. Numer. Anal. 25(2), 294–318 (1988).  https://doi.org/10.1137/0725021 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Einfeldt, B., Munz, C.D., Roe, P.L., Sjögreen, B.: On Godunov-type methods near low densities. J. Comput. Phys. 92, 273–295 (1991).  https://doi.org/10.1016/0021-9991(91)90211-3 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Rusanov, V.V.: Calculation of interaction of non-steady shock waves with obstacles. J. Comput. Math. Phys. USSR 1, 267–279 (1961)Google Scholar
  16. 16.
    Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the HLL Riemann solver. Shock Waves 4, 25–34 (1994).  https://doi.org/10.1007/BF01414629 CrossRefzbMATHGoogle Scholar
  17. 17.
    Batten, P., Clarke, N., Lambert, C., Causon, D.M.: On the choice of wavespeeds for the HLLC Riemann solver. SIAM J. Sci. Comput. 18, 1553–1570 (1997).  https://doi.org/10.1137/S1064827593260140 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Osher, S., Solomon, F.: Upwind difference schemes for hyperbolic systems of conservation laws. Math. Comput. 38(158), 339–374 (1982).  https://doi.org/10.1090/S0025-5718-1982-0645656-0 MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Dumbser, M., Toro, E.F.: A simple extension of the Osher Riemann solver to non-conservative hyperbolic systems. J. Sci. Comput. 48, 70–88 (2011).  https://doi.org/10.1007/s10915-010-9400-3 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Dumbser, M., Balsara, D.S.: A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems. J. Comput. Phys. 304, 275–319 (2016).  https://doi.org/10.1016/j.jcp.2015.10.014 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Brio, M., Wu, C.C.: An upwind differencing scheme for the equations of ideal magnetohydrodynamics. J. Comput. Phys. 75, 400–422 (1988).  https://doi.org/10.1016/0021-9991(88)90120-9 MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Ryu, D.S., Jones, T.W.: Numerical magnetohydrodynamics in astrophysics: algorithm and test for one-dimensional flow. Astrophys. J. 442, 228–258 (1995).  https://doi.org/10.1086/175437 CrossRefGoogle Scholar
  23. 23.
    Roe, P.L., Balsara, D.S.: Notes on the eigensystem of magnetohydrodynamics. SIAM J. Appl. Math. 56, 57–67 (1996).  https://doi.org/10.1137/S003613999427084X MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Cargo, P., Gallice, G.: Roe matrices for ideal MHD and systematic construction of Roe matrices for systems of conservation laws. J. Comput. Phys. 136, 446–466 (1997).  https://doi.org/10.1006/jcph.1997.5773 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Balsara, D.S.: Linearized formulation of the Riemann problem for adiabatic and isothermal magnetohydrodynamics. Astrophys. J. Suppl. 116, 119–131 (1998).  https://doi.org/10.1086/313092 CrossRefGoogle Scholar
  26. 26.
    Miyoshi, T., Kusano, K.: A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics. J. Comput. Phys. 208, 315–344 (2005).  https://doi.org/10.1016/j.jcp.2005.02.017 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Gurski, K.F.: An HLLC-type approximate Riemann solver for ideal magnetohydrodynamics. SIAM J. Sci. Comput. 25(6), 2165–2187 (2004).  https://doi.org/10.1137/S1064827502407962 MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Li, S.: An HLLC Riemann solver for magnetohydrodynamics. J. Comput. Phys. 203, 344–357 (2005).  https://doi.org/10.1016/j.jcp.2004.08.020 MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Liou, M.S., Steffen Jr., C.J.: A new flux splitting scheme. J. Comput. Phys. 107(1), 23–39 (1993).  https://doi.org/10.1006/jcph.1993.1122 MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Liou, M.S.: A sequel to AUSM: AUSM\(+\). J. Comput. Phys. 129(2), 364–382 (1996).  https://doi.org/10.1006/jcph.1996.0256 MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Kim, K.H., Kim, C., Rho, O.H.: Methods for the accurate computations of hypersonic flows: I. AUSMPW\(+\) scheme. J. Comput. Phys. 174, 38–80 (2001).  https://doi.org/10.1006/jcph.2001.6873 MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Liou, M.-S.: A sequel to AUSM, part II: AUSM\({+}\)-up for all speeds. J. Comput. Phys. 214, 137–170 (2006).  https://doi.org/10.1016/j.jcp.2005.09.020 MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Shima, E., Kitamura, K.: Parameter-free simple low-dissipation AUSM-family scheme for all speeds. AIAA J. 49(8), 1693–1709 (2011).  https://doi.org/10.2514/1.J050905 CrossRefGoogle Scholar
  34. 34.
    Kitamura, K., Shima, E.: Towards shock-stable and accurate hypersonic heating computations: a new pressure flux for AUSM-family schemes. J. Comput. Phys. 245, 62–83 (2013).  https://doi.org/10.1016/j.jcp.2013.02.046 MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Kitamura, K., Shima, E., Fujimoto, K., Wang, Z.J.: Performance of low-dissipation Euler fluxes and preconditioned LU-SGS at low speeds. Commun. Comput. Phys. 10(1), 90–119 (2011).  https://doi.org/10.4208/cicp.041109.160910a MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Weiss, J.M., Smith, W.A.: Preconditioning applied to variable and constant density flows. AIAA J. 33(11), 2050–2057 (1995).  https://doi.org/10.2514/3.12946 CrossRefzbMATHGoogle Scholar
  37. 37.
    Li, X., Gu, C.: An all-speed Roe-type scheme and its asymptotic analysis of low Mach number behavior. J. Comput. Phys. 227, 5144–5159 (2008).  https://doi.org/10.1016/j.jcp.2008.01.037 MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Kitamura, K.: Assessment of SLAU2 and other flux functions with slope limiters in hypersonic shock-interaction heating. Comput. Fluids 129, 134–145 (2016).  https://doi.org/10.1016/j.compfluid.2016.02.006 MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Pandolfi, M., D’Ambrosio, D.: Numerical instabilities in upwind methods: analysis and cures for the “Carbuncle” phenomenon. J. Comput. Phys. 166(2), 271–301 (2001).  https://doi.org/10.1006/jcph.2000.6652 MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Kitamura, K., Shima, E., Roe, P.: Carbuncle phenomena and other shock anomalies in three dimensions. AIAA J. 50(12), 2655–2669 (2012).  https://doi.org/10.2514/1.J051227 CrossRefGoogle Scholar
  41. 41.
    Chauvat, Y., Moschetta, J.M., Gressier, J.: Shock wave numerical structure and the carbuncle phenomenon. Int. J. Numer. Methods Fluids 47(8–9), 903–909 (2005).  https://doi.org/10.1002/fld.916 CrossRefzbMATHGoogle Scholar
  42. 42.
    Dumbser, M., Moschetta, J.M., Gressier, J.: A matrix stability analysis of the carbuncle phenomenon. J. Comput. Phys. 197(2), 647–670 (2004).  https://doi.org/10.1016/j.jcp.2003.12.013 CrossRefzbMATHGoogle Scholar
  43. 43.
    Quirk, J.J.: A contribution to the great Riemann solver debate. Int. J. Numer. Methods Fluids 18(6), 555–574 (1994).  https://doi.org/10.1002/fld.1650180603 MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Kitamura, K., Roe, P., Ismail, F.: Evaluation of Euler fluxes for hypersonic flow computations. AIAA J. 47, 44–53 (2009).  https://doi.org/10.2514/1.33735 CrossRefGoogle Scholar
  45. 45.
    Barth, T.J.: Some notes on shock-resolving flux functions part 1: stationary characteristics. NASA TM-101087 (1989)Google Scholar
  46. 46.
    Hanayama, H., Takahashi, K., Tomisaka, K.: Generation of seed magnetic fields in primordial supernova remnants. ArXiv e-prints arXiv:0912.2686 (2009)
  47. 47.
    Balsara, D.S.: Total variation diminishing scheme for adiabatic and isothermal magnetohydrodynamics. Astrophys. J. Suppl. Ser. 116, 133–153 (1998).  https://doi.org/10.1086/313093 CrossRefGoogle Scholar
  48. 48.
    Stone, J.M., Gardiner, T.A., Teuben, P., Hawley, J.F., Simon, J.B.: ATHENA: a new code for astrophysical MHD. Astrophys. J. Suppl. Ser. 178(1), 137–177 (2008).  https://doi.org/10.1086/588755 CrossRefGoogle Scholar
  49. 49.
    Matsumoto, Y., Asahina, Y., Kudoh, Y., Kawashima, T., Matsumoto, J., Takahashi, H.R., Minoshima, T., Zenitani, S., Miyoshi, T., Matsumoto, R.: Magnetohydrodynamic simulation code CANS\(+\): assessments and applications. ArXiv e-prints arXiv:1611.01775 (2016)
  50. 50.
    Tzeferacos, P., Fatenejad, M., Flocke, N., Graziani, C., Gregori, G., Lamb, D.Q., Lee, D., Meinecke, J., Scopatz, A., Weide, K.: FLASH MHD simulations of experiments that study shock-generated magnetic fields. High Energy Density Phys. 17(Part A), 24–31 (2015).  https://doi.org/10.1016/j.hedp.2014.11.003 CrossRefGoogle Scholar
  51. 51.
    Mignone, A., Bodo, G., Massaglia, S., Matsakos, T., Tesileanu, O., Zanni, C., Ferrari, A.: PLUTO: a numerical code for computational astrophysics. (2007) arXiv:astro-ph/0701854
  52. 52.
    Shen, Y., Zha, G., Huerta, M.A.: E-CUSP scheme for the equations of ideal magnetohydrodynamics with high order WENO scheme. J. Comput. Phys. 231, 6233–6247 (2012).  https://doi.org/10.1016/j.jcp.2012.04.015 MathSciNetCrossRefGoogle Scholar
  53. 53.
    Han, S.H., Lee, J.I., Kim, K.H.: Accurate and robust pressure weight advection upstream splitting method for magnetohydrodynamics equations. AIAA J. 47(4), 970–981 (2009).  https://doi.org/10.2514/1.39375 CrossRefGoogle Scholar
  54. 54.
    Xisto, C.M., Páscoa, J.C., Oliveira, P.J.: A pressure-based high resolution numerical method for resistive MHD. J. Comput. Phys. 275, 323–345 (2014).  https://doi.org/10.1016/j.jcp.2014.07.009 MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Kitamura, K., Hashimoto, A.: Reduced dissipation AUSM-family fluxes: HR-SLAU2 and HR-AUSM+-up for high resolution unsteady flow simulations. Comput. Fluids 126, 41–57 (2016).  https://doi.org/10.1016/j.compfluid.2015.11.014 MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Matsuyama, S.: Performance of all-speed AUSM-family schemes for DNS of low Mach number turbulent channel flow. Comput. Fluids 91, 130–143 (2014).  https://doi.org/10.1016/j.compfluid.2013.12.010 MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Batchelor, G.K.: The conditions for dynamical similarity of motions of a frictionless perfect-gas atmosphere. Q. J. R. Meteorol. Soc. 79(340), 224–235 (1953).  https://doi.org/10.1002/qj.49707934004 CrossRefGoogle Scholar
  58. 58.
    Ogura, Y., Phillips, N.: Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci. 19, 173–179 (1962)  https://doi.org/10.1175/1520-0469(1962)019%3C0173:SAODAS%3E2.0.CO;2
  59. 59.
    Gough, D.O.: The anelastic approximation for thermal convection. J. Atmos. Sci. 26, 448–456 (1969).  https://doi.org/10.1175/1520-0469(1969)026%3C0448:TAAFTC%3E2.0.CO;2
  60. 60.
    Hotta, H., Rempel, M., Yokoyama, T.: High-resolution calculations of the solar global convection with the reduced speed of sound technique. I. The structure of the convection and the magnetic field without the rotation. Astrophys. J. 786, 24 (2014).  https://doi.org/10.1088/0004-637X/786/1/24 CrossRefGoogle Scholar
  61. 61.
    Brown, B.P., Vasil, G.M., Zweibel, E.G.: Energy conservation and gravity waves in sound-proof treatments of stellar interiors. Part I. Anelastic approximations. Astrophys. J. 756, 109 (2012).  https://doi.org/10.1088/0004-637X/756/2/109 CrossRefGoogle Scholar
  62. 62.
    Vasil, G.M., Lecoanet, D., Brown, B.P., Wood, T.S., Zweibel, E.G.: Energy conservation and gravity waves in sound-proof treatments of stellar interiors. II. Lagrangian constrained analysis. Astrophys. J. 773, 169 (2013).  https://doi.org/10.1088/0004-637X/773/2/169 CrossRefGoogle Scholar
  63. 63.
    Rogers, T.M., Glatzmaier, G.A.: Angular momentum transport by gravity waves in the solar interior. Astrophys. J. 653(1), 756–764 (2006).  https://doi.org/10.1086/507259 CrossRefGoogle Scholar
  64. 64.
    Rogers, T.M., MacGregor, K.B.: On the interaction of internal gravity waves with a magnetic field—II. Convective forcing. Mon. Not. R. Astron. Soc. 410(2), 946–962 (2011).  https://doi.org/10.1111/j.1365-2966.2010.17493.x CrossRefGoogle Scholar
  65. 65.
    MacGregor, K.B., Rogers, T.M.: Reflection and ducting of gravity waves inside the Sun. Sol. Phys. 270(2), 417–436 (2011).  https://doi.org/10.1007/s11207-011-9771-0 CrossRefGoogle Scholar
  66. 66.
    Brun, A.S., Miesch, M.S., Toomre, J.: Modeling the dynamical coupling of solar convection with the radiative interior. Astrophys. J. 742, 79 (2011).  https://doi.org/10.1088/0004-637X/742/2/79 CrossRefGoogle Scholar
  67. 67.
    Lantz, S.R.: Dynamical behavior of magnetic fields in a stratified, convecting fluid layer. Ph.D. Thesis, Cornell University (1992)Google Scholar
  68. 68.
    Braginsky, S.I., Roberts, P.H.: Equations governing convection in Earth’s core and the geodynamo. Geophys. Astrophys. Fluid Dyn. 79(1), 1–97 (1995).  https://doi.org/10.1080/03091929508228992 CrossRefGoogle Scholar
  69. 69.
    ITER Physics Basis Editors et al.: ITER physics basis. Nucl. Fusion 39, 2137 (1999).  https://doi.org/10.1088/0029-5515/39/12/301
  70. 70.
    Loarte, A., Liu, F., Huijsmans, G.T.A., Kukushkin, A.S., Pitts, R.A.: MHD stability of the ITER pedestal and SOL plasma and its influence on the heat flux width. J. Nucl. Mater. 463, 401–405 (2015).  https://doi.org/10.1016/j.jnucmat.2014.11.122 CrossRefGoogle Scholar
  71. 71.
    Balsara, D.S.: Second-order-accurate schemes for magnetohydrodynamics with divergence-free reconstruction. Astrophys. J. Suppl. Ser. 151, 149–184 (2004).  https://doi.org/10.1086/381377 CrossRefGoogle Scholar
  72. 72.
    Balsara, D.S., Spicer, D.S.: A staggered Mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamics simulation. J. Comput. Phys. 149, 270–292 (1999).  https://doi.org/10.1006/jcph.1998.6153 MathSciNetCrossRefzbMATHGoogle Scholar
  73. 73.
    Dedner, A., Kemm, F., Kröner, D., Munz, C.D., Schnitzer, T., Wesenberg, M.: Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys. 175, 645–673 (2002).  https://doi.org/10.1006/jcph.2001.6961 MathSciNetCrossRefzbMATHGoogle Scholar
  74. 74.
    Tóth, G.: The \(\nabla \cdot {\varvec {B}} = 0\) constraint in shock-capturing magnetohydrodynamics codes. J. Comput. Phys. 161, 605–652 (2000).  https://doi.org/10.1006/jcph.2000.6519 MathSciNetCrossRefzbMATHGoogle Scholar
  75. 75.
    Powell, K.G., Roe, P.L., Linde, T., Gombosi, T.I., De Zeeuw, D.L.: A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys. 154, 284–309 (1999).  https://doi.org/10.1006/jcph.1999.6299 MathSciNetCrossRefzbMATHGoogle Scholar
  76. 76.
    Balsara, D.S.: Multidimensional HLLE Riemann solver; application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 229, 1970–1993 (2010).  https://doi.org/10.1016/j.jcp.2009.11.018 MathSciNetCrossRefzbMATHGoogle Scholar
  77. 77.
    Balsara, D.S.: A two-dimensional HLLC Riemann solver for conservation laws: application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 231, 7476–7503 (2012).  https://doi.org/10.1016/j.jcp.2011.12.025 MathSciNetCrossRefzbMATHGoogle Scholar
  78. 78.
    Balsara, D.S.: Multidimensional Riemann problem with self-similar internal structure, part I: application to hyperbolic conservation laws on structured meshes. J. Comput. Phys. 277, 163–200 (2014).  https://doi.org/10.1016/j.jcp.2014.07.053 MathSciNetCrossRefzbMATHGoogle Scholar
  79. 79.
    Balsara, D.S., Nkonga, B.: Multidimensional Riemann problem with self-similar internal structure—part III—a multidimensional analogue of the HLLI Riemann solver for conservative hyperbolic systems. J. Comput. Phys. 346, 25–48 (2017).  https://doi.org/10.1016/j.jcp.2017.05.038 MathSciNetCrossRefzbMATHGoogle Scholar
  80. 80.
    Balsara, D.S.: Self-adjusting, positivity preserving high order schemes for hydrodynamic and magnetohydrodynamics. J. Comput. Phys. 231, 7504–7517 (2012).  https://doi.org/10.1016/j.jcp.2012.01.032 MathSciNetCrossRefGoogle Scholar
  81. 81.
    Shima, E., Kitamura, K.: AUSM like expression of HLLC scheme and its extension to all speed scheme. In: 6th European Conference on Computational Fluid Dynamics (ECFD VI) Barcelona, Spain (2014)Google Scholar
  82. 82.
    Luo, H., Baum, J.D., Löhner, R.: Extension of Harten–Lax–van Leer scheme for flows at all speeds. AIAA J. 43(6), 1160–1166 (2005).  https://doi.org/10.2514/1.7567 CrossRefGoogle Scholar
  83. 83.
    Park, S.H., Lee, J.E., Kwon, J.H.: Preconditioned HLLE method for flows at all Mach numbers. AIAA J. 44(11), 2645–2653 (2006).  https://doi.org/10.2514/1.12176 CrossRefGoogle Scholar
  84. 84.
    Stix, M.: The Sun: An Introduction, 2nd edn. Astronomy and Astrophysics Library. Springer, Berlin (2002). ISBN 3-540-20741-4.  https://doi.org/10.1007/978-3-642-56042-2
  85. 85.
    Huang, K., Wu, H., Yu, H., Yan, D.: Cures for numerical shock instability in HLLC solver. Int. J. Numer. Methods Fluids 65(9), 1026–1038 (2011).  https://doi.org/10.1002/fld.2217 CrossRefzbMATHGoogle Scholar
  86. 86.
    Zha, G., Shen, Y., Huerta, M.: Rotated hybrid low diffusion ECUSP-HLL scheme and its applications to hypersonic flows. In: 20th AIAA Computational Fluid Dynamics Conference, AIAA Paper 2011-3545 (2011).  https://doi.org/10.2514/6.2011-3545
  87. 87.
    Ihm, S.-W., Kim, C.: Computations of homogeneous-equilibrium two-phase flows with accurate and efficient shock-stable schemes. AIAA J. 46(12), 3012–3037 (2008).  https://doi.org/10.2514/1.35097 CrossRefGoogle Scholar
  88. 88.
    Dai, W., Woodward, P.R.: An approximate Riemann solver for ideal magnetohydrodynamics. J. Comput. Phys. 111, 354–372 (1994).  https://doi.org/10.1006/jcph.1994.1069 CrossRefzbMATHGoogle Scholar
  89. 89.
    Pierce, A.D.: ACOUSTICS—An Introduction to Its Physical Principles and Applications, pp. 20–22. Acoustical Society of America, New York (1989)Google Scholar
  90. 90.
    Kitamura, K., Hashimoto, A., Murakami, K., Aoyama, T. and Nakamura, Y.: High resolution CFD/CAA hybrid analysis of supersonic jet interacting with walls. In: 37th AIAA Fluid Dynamics Conference and Exhibit, Miami, FL, AIAA Paper 2007-3871 (2007).  https://doi.org/10.2514/6.2007-3871
  91. 91.
    Happenhofer, N., Grimm-Strele, H., Kupka, F., Löw-Baselli, B., Muthsam, H.: A low Mach number solver: enhancing applicability. J. Comput. Phys. 236, 96–118 (2013).  https://doi.org/10.1016/j.jcp.2012.11.002 MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Yokohama National UniversityYokohamaJapan
  2. 2.University of Notre DameNotre DameUSA

Personalised recommendations