Shock Waves

, Volume 29, Issue 1, pp 135–151 | Cite as

Modal decomposition of turbulent supersonic cavity

  • R. K. Soni
  • N. Arya
  • A. DeEmail author
Original Article


Self-sustained oscillations in a Mach 3 supersonic cavity with a length-to-depth ratio of three are investigated using wall-modeled large eddy simulation methodology for \(\hbox {Re}_{D} = 3.39\times 10^{5}\). The unsteady data obtained through computation are utilized to investigate the spatial and temporal evolution of the flow field, especially the second invariant of the velocity tensor, while the phase-averaged data are analyzed over a feedback cycle to study the spatial structures. This analysis is accompanied by the proper orthogonal decomposition (POD) data, which reveals the presence of discrete vortices along the shear layer. The POD analysis is performed in both the spanwise and streamwise planes to extract the coherence in flow structures. Finally, dynamic mode decomposition is performed on the data sequence to obtain the dynamic information and deeper insight into the self-sustained mechanism.


LES Supersonic cavity Proper orthogonal decomposition Dynamic mode decomposition 



Financial support for this research is provided through IITK-Space Technology Cell (STC) (Grant No. STC/AE/20130054). Also, the authors would like to acknowledge the High-Performance Computing (HPC) Facility at IIT Kanpur.


  1. 1.
    Plentovich, E., Stallings Jr., R., Tracy, M.: Experimental cavity pressure measurements at subsonic and transonic speeds. Technical Paper 3358, NASA (1993)Google Scholar
  2. 2.
    Rossiter, J.E.: The effects of cavities on the buffeting of aircraft. Royal Aircraft Establishment, Technical Memorandum No. Aero 754, RAE Farnborough (1962)Google Scholar
  3. 3.
    Stallings Jr., R.L., Wilcox Jr., F.J.: Experimental cavity pressure distributions at supersonic speeds. Technical Report 2683, NASA (1987)Google Scholar
  4. 4.
    Tracy, M.B., Plentovich, E.B., Chu, J.: Measurements of fluctuating pressure in a rectangular cavity in transonic flow at high Reynolds numbers. Technical Memorandum 4363, NASA (1992)Google Scholar
  5. 5.
    Rossiter, J.E.: Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Ministry of Aviation; Royal Aircraft Establishment, RAE Farnborough (1964)Google Scholar
  6. 6.
    Rossiter, J.E.: A preliminary investigation into armament bay buffet at subsonic and transonic speeds. Royal Aircraft Establishment, TM AERO 679 (1960)Google Scholar
  7. 7.
    Rossiter, J.E.: A note on periodic pressure fluctuations in the flow over open cavities. Technical Memorandum No. Aero 743, Royal Aircraft Establishment (1961)Google Scholar
  8. 8.
    Rossiter, J.E., Kurn, A.G.: Wind tunnel measurements of the unsteady pressures in and behind a bomb bay (Canberra). HM Stationery Office (1965)Google Scholar
  9. 9.
    Heller, H., Holmes, D.G., Covert, E.E.: Flow-induced pressure oscillations in shallow cavities. J. Sound Vib. 18(4), 545–553 (1971). CrossRefGoogle Scholar
  10. 10.
    Heller, H., Bliss, D.: Aerodynamically induced pressure oscillations in cavities—physical mechanisms and suppression concepts. Technical Report AFFDL-TR-74-133, Air Force Flight Dynamics Laboratory (1975)Google Scholar
  11. 11.
    Heller, H., Bliss, D.: The physical mechanism of flow-induced pressure fluctuations in cavities and concepts for their suppression. In: 2nd Aeroacoustics Conference, AIAA Paper 1975-491 (1975).
  12. 12.
    Heller, H., Delfs, J.: Cavity pressure oscillations: The generating mechanism visualized. J. Sound Vib. 196(2), 248–252 (1996). CrossRefGoogle Scholar
  13. 13.
    Zhang, X., Rona, A., Edwards, J.A.: An observation of pressure waves around a shallow cavity. J. Sound Vib. 214(4), 771–778 (1998). CrossRefGoogle Scholar
  14. 14.
    Arunajatesan, S., Sinha, N.: Hybrid RANS–LES modeling for cavity aeroacoustics predictions. Int. J. Comput. Aeroacoust. 2(1), 65–93 (2003). CrossRefGoogle Scholar
  15. 15.
    Rizzetta, D.P., Visbal, M.R.: Large-eddy simulation of supersonic cavity flow-fields including flow control. AIAA J. 41(8), 1452–1462 (2003). CrossRefGoogle Scholar
  16. 16.
    Zhuang, N., Alvi, F.S., Alkislar, M.B., Shih, C.: Supersonic cavity flows and their control. AIAA J. 44(9), 2118–2128 (2006). CrossRefGoogle Scholar
  17. 17.
    Tam, C.K., Block, P.J.: On the tones and pressure oscillations induced by flow over rectangular cavities. J. Fluid Mech. 89(2), 373–399 (1978). MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lumley, J.L.: The structure of inhomogeneous turbulent flows. In: Yaglom, A.M., Tatarsky, V.I. (eds.) Atmospheric Turbulence and Radio Wave Propagation, pp. 166–178. Nauka, Moscow (1967)Google Scholar
  19. 19.
    Sirovich, L.: Turbulence and the dynamics of coherent structures. I—Coherent structures. II—Symmetries and transformations. III—Dynamics and scaling. Q. Appl. Math. 45, 561–571 (1987). CrossRefzbMATHGoogle Scholar
  20. 20.
    Soni, R.K., De, A.: Investigation of mixing characteristics in strut injectors using modal decomposition. Phys. Fluids 30(1), 016108 (2018). CrossRefGoogle Scholar
  21. 21.
    Das, P., De, A.: Numerical investigation of flow structures around a cylindrical after body under supersonic condition. Aerosp. Sci. Technol. 47, 195–209 (2015). CrossRefGoogle Scholar
  22. 22.
    Das, P., De, A.: Numerical study of flow physics in supersonic base-flow with mass bleed. Aerosp. Sci. Technol. 58, 1–17 (2016). CrossRefGoogle Scholar
  23. 23.
    Kumar, G., De, A., Gopalan, H.: Investigation of flow structures in a turbulent separating flow using hybrid RANS–LES model. Int. J. Numer. Methods Heat Fluid Flow 27(7), 1430–1450 (2016). CrossRefGoogle Scholar
  24. 24.
    Rowley, C.W., Mezić, I., Bagheri, S., Schlatter, P., Henningson, D.S.: Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115–127 (2009). MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010). MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Mezić, I.: Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 41(1–3), 309–325 (2005). MathSciNetzbMATHGoogle Scholar
  27. 27.
    Zhang, C., Wan, Z., Sun, D.: Model reduction for supersonic cavity flow using proper orthogonal decomposition (POD) and Galerkin projection. Appl. Math. Mech. 38(5), 723–736 (2017). MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Yoshizawa, A.: Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling. Phys. Fluids 29(7), 2152–2164 (1986). CrossRefzbMATHGoogle Scholar
  29. 29.
    Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids 3(7), 1760–1765 (1991). CrossRefzbMATHGoogle Scholar
  30. 30.
    Moin, P., Squires, K.D., Cabot, W.H., Lee, S.: A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys. Fluids A 3, 2746–2757 (1991). CrossRefzbMATHGoogle Scholar
  31. 31.
    Soni, R.K., Arya, N., De, A.: Characterization of turbulent supersonic flow over a backward-facing step. AIAA J. 55(5), 1511–1529 (2017). CrossRefGoogle Scholar
  32. 32.
    Lagha, M., Kim, J., Eldredge, J.D., Zhong, X.: A numerical study of compressible turbulent boundary layers. Phys. Fluids 23(1), 015106 (2011). CrossRefGoogle Scholar
  33. 33.
    Guarini, S.E., Moser, R.D., Shariff, K., Wray, A.: Direct numerical simulation of a supersonic turbulent boundary layer at Mach 2.5. J. Fluid Mech. 414, 1–33 (2000). CrossRefzbMATHGoogle Scholar
  34. 34.
    Poinsot, T.J.A., Lele, S.K.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101(1), 104–129 (1992). MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Greenshields, C.J., Weller, H.G., Gasparini, L., Reese, J.M.: Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows. Int. J. Numer. Methods Fluids 63(1), 1–21 (2010). MathSciNetzbMATHGoogle Scholar
  36. 36.
    Kurganov, A., Tadmor, E.: New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations. J. Comput. Phys. 160(1), 241–282 (2000). MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Rony T., Zeidan, D.: An unstaggered central scheme on nonuniform grids for the simulation of a compressible two-phase flow model. In: AIP Conference Proceedings, vol. 1738, no. 1. AIP Publishing (2016).
  38. 38.
    Zeidan, D.: Numerical resolution for a compressible two-phase flow model based on the theory of thermodynamically compatible systems. Appl. Math. Comput. 217(11), 5023–5040 (2011). MathSciNetzbMATHGoogle Scholar
  39. 39.
    Zeidan, D.: Drag force simulation in explosive volcanic flows. In: AIP Conference Proceedings, vol. 1648, no. 1. AIP Publishing (2015).
  40. 40.
    Gruber, M.R., Baurle, R.A., Mathur, T., Hsu, K.Y.: Fundamental studies of cavity-based flameholder concepts for supersonic combustors. J. Propul. Power 17(1), 146–153 (2001). CrossRefGoogle Scholar
  41. 41.
    Celik, I.B., Cehreli, Z.N., Yavuz, I.: Index of resolution quality for large eddy simulations. J. Fluids Eng. 127(5), 949–958 (2005). CrossRefGoogle Scholar
  42. 42.
    Ben-Yakar, A., Hanson, R.K.: Cavity flame-holders for ignition and flame stabilization in scramjets: An overview. J. Propul. Power 17(4), 869–877 (2001). CrossRefGoogle Scholar
  43. 43.
    Arya, N., Soni, R.K., De, A.: Investigation of flow characteristics in supersonic cavity using LES. Am. J. Fluid Dyn. 5(3A), 24–32 (2015). Google Scholar
  44. 44.
    Li, W., Nonomura, T., Fujii, K.: On the feedback mechanism in supersonic cavity flows. Phys. Fluids 25(5), 056101 (2013). CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Aerospace EngineeringIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations