Advertisement

Shock Waves

, Volume 29, Issue 3, pp 401–413 | Cite as

Investigation of conjugate circular arcs in rocket nozzle contour design

  • K. SchombergEmail author
  • J. Olsen
  • A. Neely
  • G. Doig
Original Article

Abstract

The use of conjugate circular arcs in rocket nozzle contour design has been investigated by numerically comparing three existing sub-scale nozzles to a range of equivalent arc-based contour designs. Three performance measures were considered when comparing nozzle designs: thrust coefficient, nozzle exit wall pressure, and a transition between flow separation regimes during the engine start-up phase. In each case, an equivalent arc-based contour produced an increase in the thrust coefficient and exit wall pressure of up to 0.4 and 40% respectively, in addition to suppressing the transition between a free and restricted shock separation regime. A general approach to arc-based nozzle contour design has also been presented to outline a rapid and repeatable process for generating sub-scale arc-based contours with an exit Mach number of 3.8–5.4 and a length between 60 and 100% of a 15\(^{\circ }\) conical nozzle. The findings suggest that conjugate circular arcs may represent a viable approach for producing sub-scale rocket nozzle contours, and that a further investigation is warranted between arc-based and existing full-scale rocket nozzles.

Keywords

Rocket nozzle Supersonic flow Contour design 

Notes

References

  1. 1.
    Vuillermoz, P., Weiland, C., Hagemann, G., Aupoix, B., Grosdemange, H., Bigert, M.: Nozzle design and optimization. In: Yang, V., Habiballah, M., Hulka, J., Popp, M. (eds.) Progress in Astronautics and Aeronautics: Liquid Rocket Thrust Chambers, pp. 469–492. American Institute of Aeronautics and Astronautics, Reston (2004).  https://doi.org/10.2514/5.9781600866760.0469.0492 Google Scholar
  2. 2.
    Shapiro, A.: Nozzles for supersonic flow without shock fronts. J. Appl. Mech. 11(2), 93–100 (1944)Google Scholar
  3. 3.
    Ahlberg, J., Hamilton, S., Migdal, D., Nilson, E.: Truncated perfect nozzles in an optimum nozzle design. ARS J. 31(5), 614–620 (1961).  https://doi.org/10.2514/8.5577 CrossRefGoogle Scholar
  4. 4.
    Gogish, L.: A study of short supersonic nozzles. Fluid Dyn. 1(2), 122–126 (1966).  https://doi.org/10.1007/bf01013838 CrossRefGoogle Scholar
  5. 5.
    Watanabe, Y., Sakazume, N., Yonezawa, K., Tsujimoto, Y.: LE7A engine nozzle flow separation phenomena and a method of RSS suppression with a step inside nozzle. J. Jpn. Soc. Aeronaut. Space Sci. 55(645), 474–482 (2007).  https://doi.org/10.2322/jjsass.55.474 Google Scholar
  6. 6.
    Guderley, G., Hantsch, E.: Beste Formen fur Aschsensymmetrische Uberschallschubdusen. Zeitschrift fur Flugwissenschaften 3, 305–313 (1955)zbMATHGoogle Scholar
  7. 7.
    Rao, G.: Exhaust nozzle contour for optimum thrust. Jet Propuls. 28(6), 377–382 (1958).  https://doi.org/10.2514/8.7324 CrossRefGoogle Scholar
  8. 8.
    Rao, G.: Approximation of optimum thrust nozzle contour. ARS J. 30(6), 561 (1960)Google Scholar
  9. 9.
    Nave, L., Coffey, G.: Sea level side loads in high-area-ratio rocket engines. In: 9th AIAA Joint Propulsion Conference, AIAA Paper 73-1284 (1973).  https://doi.org/10.2514/6.1973-1284
  10. 10.
    Sutton, G.: History of Liquid Propellant Rocket Engines, pp. 91–92. American Institute of Aeronautics and Astronautics, Reston (2006).  https://doi.org/10.2514/4.868870 CrossRefGoogle Scholar
  11. 11.
    Sternin, L.: Analysis of the thrust characteristics of jet nozzles designed by various methods. Fluid Dyn. 35(1), 123–131 (2000).  https://doi.org/10.1007/bf02698797 CrossRefzbMATHGoogle Scholar
  12. 12.
    Davis, D.: Investigation of optimization techniques for solid rocket motor nozzle contours. In: 18th AIAA Joint Propulsion Conference, AIAA Paper 82-1188 (1982).  https://doi.org/10.2514/6.1982-1188
  13. 13.
    Sutton, G., Biblarz, O.: Rocket Propulsion Elements, pp. 27–102. Wiley, Hoboken (2010)Google Scholar
  14. 14.
    Schomberg, K., Doig, G., Olsen, J.: Design of high area nozzle contours using circular arcs. J. Propul. Power 32(1), 188–195 (2016).  https://doi.org/10.2514/1.b35640 CrossRefGoogle Scholar
  15. 15.
    Schomberg, K., Olsen, J., Neely, A., Doig, G.: Suppressing restricted shock separation in thrust-optimized rocket nozzles using contour geometry. J. Propul. Power 32(5), 1298–1301 (2016).  https://doi.org/10.2514/1.b36059 CrossRefGoogle Scholar
  16. 16.
    Stark, R., Hagemann, G.: Current status of flow prediction for separated nozzle flows. In: 2nd European Conference for Aerospace Sciences, pp. 1–8 (2007)Google Scholar
  17. 17.
    Ostlund, J.: Flow Processes in Rocket Engine Nozzles with Focus on Flow Separation and Side-Loads. Royal Institute of Technology, Stockholm (2002)Google Scholar
  18. 18.
    Nguyen, A., Deniau, H., Girard, S., Alziary De Roquefort, T.: Unsteadiness of flow separation and end-effects regime in a thrust-optimized contour rocket nozzle. Flow Turbul. Combust. 75, 161–181 (2003).  https://doi.org/10.1023/b:appl.0000014927.61427.ad CrossRefzbMATHGoogle Scholar
  19. 19.
    Spalart, P., Allmaras, S.: A one-equation turbulence model for aerodynamic flows. La Recherche Aerospatiale 1(5), 5–21 (1992)Google Scholar
  20. 20.
    Sutherland, W.: The viscosity of gases and molecular force. Philos. Mag. 36, 507–531 (1893).  https://doi.org/10.1080/14786449308620508 CrossRefzbMATHGoogle Scholar
  21. 21.
    Roache, P.J.: Quantification of uncertainty in computational fluid dynamics. Annu. Rev. Fluid Mech. 29, 123–160 (1997).  https://doi.org/10.1146/annurev.fluid.29.1.123 MathSciNetCrossRefGoogle Scholar
  22. 22.
    Meijer, J., Van Beek, C.: Analysis of Ariane 5 Base Flow Measurements in the NLR/PHST and FFA/T1500 Wind Tunnels, NLR-CR 99449, National Aerospace Laboratory (1999)Google Scholar
  23. 23.
    Wang, T., Guidos, M.: Transient three-dimensional side-load analysis of a film-cooled nozzle. J. Propul. Power 25(6), 1272–1280 (2009).  https://doi.org/10.2514/1.41025 CrossRefGoogle Scholar
  24. 24.
    Software Engineering Associates (SEA) Inc., Two-Dimensional Kinetics (TDK) Nozzle Performance Computer Program Users Manual, pp. 4–19 (2007)Google Scholar
  25. 25.
    Schomberg, K., Olsen, J., Neely, A., Doig, G.: Design of an arc-based thrust-optimized nozzle contour. In: 6th European Conference for Aerospace Sciences, pp. 1–8 (2015)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanical and Manufacturing EngineeringUNSW SydneySydneyAustralia
  2. 2.School of Engineering and Information TechnologyUNSW CanberraCanberraAustralia
  3. 3.Aerospace Engineering DepartmentCalifornia Polytechnic State UniversitySan Luis ObispoUSA

Personalised recommendations