Advertisement

Shock Waves

, Volume 29, Issue 1, pp 3–25 | Cite as

Numerical study on the convergence to steady-state solutions of a new class of finite volume WENO schemes: triangular meshes

  • J. Zhu
  • C.-W. ShuEmail author
Original Article

Abstract

In this paper, we continue our research on the numerical study of convergence to steady-state solutions for a new class of finite volume weighted essentially non-oscillatory (WENO) schemes in Zhu and Shu (J Comput Phys 349:80–96, 2017), from tensor product meshes to triangular meshes. For the case of triangular meshes, this new class of finite volume WENO schemes was designed for time-dependent conservation laws in Zhu and Qiu (SIAM J Sci Comput 40(2):A903–A928, 2018) for the third- and fourth-order versions. In this paper, we extend the design to a new fifth-order version in the same framework to keep the essentially non-oscillatory property near discontinuities. Similar to the case of tensor product meshes in Zhu and Shu  (2017), by performing such spatial reconstruction procedures together with a TVD Runge–Kutta time discretization, these WENO schemes do not suffer from slight post-shock oscillations that are responsible for the phenomenon wherein the residues of classical WENO schemes hang at a truncation error level instead of converging to machine zero. The third-, fourth-, and fifth-order finite volume WENO schemes in this paper can suppress the slight post-shock oscillations and have their residues settling down to a tiny number close to machine zero in steady-state simulations in our extensive numerical experiments.

Keywords

WENO scheme Triangular mesh Finite volume scheme Steady-state solution Convergence property 

Notes

Acknowledgements

J. Zhu: Research is supported by NSFC Grant 11372005 and the state scholarship fund of China for studying abroad. C.-W. Shu: Research is supported by ARO Grant W911NF-15-1-0226 and NSF Grant DMS-1719410.

References

  1. 1.
    Zhu, J., Shu, C.-W.: Numerical study on the convergence to steady state solutions of a new class of high order WENO schemes. J. Comput. Phys. 349, 80–96 (2017).  https://doi.org/10.1016/j.jcp.2017.08.012 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Zhu, J., Qiu, J.: New finite volume weighted essentially non-oscillatory schemes on triangular meshes. SIAM J. Sci. Comput. 40(2), A903–A928 (2018).  https://doi.org/10.1137/17M1112790 CrossRefzbMATHGoogle Scholar
  3. 3.
    Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994).  https://doi.org/10.1006/jcph.1994.1187 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Jiang, G., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996).  https://doi.org/10.1006/jcph.1996.0130 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Friedrich, O.: Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids. J. Comput. Phys. 144, 194–212 (1998).  https://doi.org/10.1006/jcph.1998.5988 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Hu, C., Shu, C.-W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150, 97–127 (1999).  https://doi.org/10.1006/jcph.1998.6165 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Titarev, V.A., Toro, E.F.: Finite-volume WENO schemes for three-dimensional conservation laws. J. Comput. Phys. 201, 238–260 (2004).  https://doi.org/10.1016/j.jcp.2004.05.015 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Titarev, V.A., Tsoutsanis, P., Drikakis, D.: WENO schemes for mixed-element unstructured meshes. Commun. Comput. Phys. 8, 585–609 (2010).  https://doi.org/10.4208/cicp.040909.080110a MathSciNetzbMATHGoogle Scholar
  9. 9.
    Zhang, Y.T., Shu, C.-W.: Third order WENO scheme on three dimensional tetrahedral meshes. Commun. Comput. Phys. 5, 836–848 (2009)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Abgrall, R.: On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation. J. Comput. Phys. 114, 45–58 (1994).  https://doi.org/10.1006/jcph.1994.1148 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Shi, J., Hu, C., Shu, C.-W.: A technique of treating negative weights in WENO schemes. J. Comput. Phys. 175, 108–127 (2002).  https://doi.org/10.1006/jcph.2001.6892 CrossRefzbMATHGoogle Scholar
  12. 12.
    Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Cockburn, B., Johnson, C., Shu, C.-W., Tadmor, E., Quarteroni, A. (eds.) Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, vol. 1697, pp. 325–432. Springer, Berlin (1998).  https://doi.org/10.1007/bfb0096355 CrossRefGoogle Scholar
  13. 13.
    Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001).  https://doi.org/10.1137/s003614450036757X MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Shu, C.-W.: Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9, 1073–1084 (1988).  https://doi.org/10.1137/0909073 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77, 439–471 (1988).  https://doi.org/10.1016/0021-9991(88)90177-5 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Zhu, J., Qiu, J.: A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 318, 110–121 (2016).  https://doi.org/10.1016/j.jcp.2016.05.010 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Zhu, J., Qiu, J.: A new type of finite volume WENO schemes for hyperbolic conservation laws. J. Sci. Comput. 73, 1338–1359 (2017).  https://doi.org/10.1007/s10915-017-0486-8 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Balsara, D.S., Garain, S., Shu, C.-W.: An efficient class of WENO schemes with adaptive order. J. Comput. Phys. 326, 780–804 (2016).  https://doi.org/10.1016/j.jcp.2016.09.009 MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Capdeville, G.: A central WENO scheme for solving hyperbolic conservation laws on non-uniform meshes. J. Comput. Phys. 227, 2977–3014 (2008).  https://doi.org/10.1016/j.jcp.2007.11.029 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Cravero, I., Semplice, M.: On the accuracy of WENO and CWENO reconstructions of third order on nonuniform meshes. J. Sci. Comput. 67, 1219–1246 (2016).  https://doi.org/10.1007/s10915-015-0123-3 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Fu, L., Hu, X.Y.Y., Adams, N.A.: A family of high-order targeted ENO schemes for compressible-fluid simulations. J. Comput. Phys. 305, 333–359 (2016).  https://doi.org/10.1016/j.jcp.2015.10.037 MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kolb, O.: On the full and global accuracy of a compact third order WENO scheme. SIAM J. Numer. Anal. 52, 2335–2355 (2014).  https://doi.org/10.1137/130947568 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Levy, D., Puppo, G., Russo, G.: Central WENO schemes for hyperbolic systems of conservation laws. Math. Model. Numer. Anal. 33, 547–571 (1999).  https://doi.org/10.1051/m2an:1999152 MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Levy, D., Puppo, G., Russo, G.: Compact central WENO schemes for multidimensional conservation laws. SIAM J. Sci. Comput. 22, 656–672 (2000).  https://doi.org/10.1137/s1064827599359461 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Semplice, M., Coco, A., Russo, G.: Adaptive mesh refinement for hyperbolic systems based on third-order compact WENO reconstruction. J. Sci. Comput. 66, 692–724 (2016).  https://doi.org/10.1007/s10915-015-0038-z MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Liu, Y., Zhang, Y.T.: A robust reconstruction for unstructured WENO schemes. J. Sci. Comput. 54, 603–621 (2013).  https://doi.org/10.1007/s10915-012-9598-3 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Harten, A., Chakravarthy, S.R.: Multi-dimensional ENO schemes for general geometries. ICASE Report, 91-76, NASA Contractor Report 187637 (1991)Google Scholar
  28. 28.
    Sonar, T.: On the construction of essentially non-oscillatory finite volume approximations to hyperbolic conservation laws on general triangulations: polynomial recovery, accuracy and stencil selection. Comput. Methods Appl. Mech. Eng. 140, 157–181 (1997).  https://doi.org/10.1016/S0045-7825(96)01060-2 MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Vankeirsbilck, P.: Algorithmic developments for the solution of hyperbolic conservation laws on adaptive unstructured grids. Ph.D. Thesis, Katholieke Universiteit Leuven, Faculteit Toegepaste Wetenschappen, Afdeling Numerieke Analyse en Toegepaste Wiskunde, Celestijnenlaan 2OOA, 3001 Leuven (Heverlee) (1993)Google Scholar
  30. 30.
    Dumbser, M., Käser, M.: Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems. J. Comput. Phys. 221, 693–723 (2007).  https://doi.org/10.1016/j.jcp.2006.06.043 MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Zhong, X., Shu, C.-W.: A simple weighted essentially nonoscillatory limiter for Runge–Kutta discontinuous Galerkin methods. J. Comput. Phys. 232, 397–415 (2013).  https://doi.org/10.1016/j.jcp.2012.08.028 MathSciNetCrossRefGoogle Scholar
  32. 32.
    Zhu, J., Zhong, X., Shu, C.-W., Qiu, J.: Runge–Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes. J. Comput. Phys. 248, 200–220 (2013).  https://doi.org/10.1016/j.jcp.2013.04.012 MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227, 3191–3211 (2008).  https://doi.org/10.1016/j.jcp.2007.11.038 MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Castro, M., Costa, B., Don, W.S.: High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 230, 1766–1792 (2011).  https://doi.org/10.1016/j.jcp.2010.11.028 MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Don, W.S., Borges, R.: Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes. J. Comput. Phys. 250, 347–372 (2013).  https://doi.org/10.1016/j.jcp.2013.05.018 MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357–372 (1981).  https://doi.org/10.1016/0021-9991(81)90128-5 MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984).  https://doi.org/10.1016/0021-9991(84)90142-6 MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Zhang, S., Shu, C.-W.: A new smoothness indicator for WENO schemes and its effect on the convergence to steady state solutions. J. Sci. Comput. 31, 273–305 (2007).  https://doi.org/10.1007/s10915-006-9111-y MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Luo, H., Baum, J.D., Löhner, R.: A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids. J. Comput. Phys. 225, 686–713 (2007).  https://doi.org/10.1016/j.jcp.2006.12.017 MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Luo, H., Baum, J.D., Löhner, R.: On the computation of steady-state compressible flows using a discontinuous Galerkin method. Int. J. Numer. Methods Eng. 73, 597–623 (2008).  https://doi.org/10.1002/nme.2081 MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Shida, Y., Kuwahara, K., Ono, K., Takami, H.: Computation of dynamic stall of a NACA-0012 airfoil. AIAA J. 25, 408–413 (1987).  https://doi.org/10.2514/3.9638 CrossRefGoogle Scholar
  42. 42.
    Cummings, R.M., Mason, W.H., Morton, S.A., McDaniel, D.R.: Applied Computational Aerodynamics: A Modern Engineering Approach. Cambridge University Press, Cambridge (2015)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of ScienceNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China
  2. 2.Division of Applied MathematicsBrown UniversityProvidenceUSA

Personalised recommendations