Advertisement

Shock Waves

, Volume 29, Issue 2, pp 263–271 | Cite as

Richtmyer–Meshkov instability of a sinusoidal interface driven by a cylindrical shock

  • L. Liu
  • J. DingEmail author
  • Z. Zhai
  • X. Luo
Original Article

Abstract

Evolution of a single-mode interface triggered by a cylindrically converging shock in a V-shaped geometry is investigated numerically using an adaptive multi-phase solver. Several physical mechanisms, including the Bell–Plesset (BP) effect, the Rayleigh–Taylor (RT) effect, the nonlinearity, and the compressibility are found to be pronounced in the converging environment. Generally, the BP and nonlinear effects play an important role at early stages, while the RT effect and the compressibility dominate the late-stage evolution. Four sinusoidal interfaces with different initial amplitudes (\(a_\mathrm {0}\)) and wavelengths (\(\lambda \)) are found to evolve differently in the converging geometry. For the very small \(a_\mathrm {0}\)/\(\lambda \) interfaces, nonlinearity is negligible at the early stages and the sole presence of the BP effect results in an increasing growth rate, confining the linear growth of the instability to a relatively small amount of time. For the moderately small \(a_\mathrm {0}\)/\(\lambda \) cases, the BP and nonlinear effects, which, respectively, promote and inhibit the perturbation development, coexist in the early stage. The counterbalancing effects between them produce a very long period of growth that is linear in time, even to a moment when the amplitude over wavelength ratio approaches 0.6. The RT stabilization effect at late stages due to the interface deceleration significantly inhibits the perturbation growth, which can be reasonably predicted by a modified Bell model.

Keywords

Richtmyer–Meshkov instability Cylindrical shock wave Single-mode interface Convergence effect 

Notes

Acknowledgements

This work was supported by the China Postdoctoral Science Foundation (Grant No. 2016M602026), National Natural Science Foundation of China (Grant Nos. 11625211, 11621202, and NSAF U1530103) and the Fundamental Research Funds for the Central Universities.

References

  1. 1.
    Richtmyer, R.D.: Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math. 13, 297 (1960).  https://doi.org/10.1002/cpa.3160130207
  2. 2.
    Meshkov, E.E.: Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn. 4, 101 (1969).  https://doi.org/10.1007/BF01015969
  3. 3.
    Rayleigh, L.: Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc. 14, 170 (1883).  https://doi.org/10.1112/plms/s1-14.1.170
  4. 4.
    Taylor, G.: The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc. R. Soc. Lond. A 201, 192 (1950).  https://doi.org/10.1098/rspa.1950.0052
  5. 5.
    Lindl, J., Landen, O., Edwards, J., Moses, E., NIC Team: Review of the National Ignition Campaign 2009–2012. Phys. Plasmas 21, 020501 (2014).  https://doi.org/10.1063/1.4865400
  6. 6.
    Wang, L., Ye, W., He, X., et al.: Theoretical and simulation research of hydrodynamic instabilities in inertial-confinement fusion implosions. Sci. China Phys. Mech. Astron. 60, 055201 (2017).  https://doi.org/10.1007/s11433-017-9016-x
  7. 7.
    Yang, J., Kubota, T., Zukoski, E.E.: Application of shock-induced mixing to supersonic combustion. AIAA J. 31, 854 (1993).  https://doi.org/10.1007/s00193-004-0231-8
  8. 8.
    Puranik, P.B., Oakley, J.G., Anderson, M.H., Bonazza, R.: Experimental study of the Richtmyer–Meshkov instability induced by a Mach 3 shock wave. Shock Waves 13, 413 (2004).  https://doi.org/10.2514/3.11696
  9. 9.
    Jacobs, J.W., Krivets, V.V.: Experiments on the late-time development of single-mode Richtmyer–Meshkov instability. Phys. Fluids 17, 034105 (2005).  https://doi.org/10.1063/1.1852574
  10. 10.
    Thornber, B., Drikakis, D., Youngs, D.L., Williams, R.J.R.: Physics of the single-shocked and reshocked Richtmyer–Meshkov instability. J. Turbul. 13, N10 (2012).  https://doi.org/10.1080/14685248.2012.658916
  11. 11.
    Lombardini, M., Pullin, D.I., Meiron, D.I.: Transition to turbulence in shock-driven mixing: a Mach number study. J. Fluid Mech. 690, 203 (2012).  https://doi.org/10.1017/jfm.2011.425
  12. 12.
    Prestridge, K., Orlicz, G., Balasubramanian, S., Balakumar, B.J.: Experiments of the Richtmyer–Meshkov instability. Philos. Trans. R. Soc. A 371, 20120165 (2013).  https://doi.org/10.1098/rsta.2012.0165
  13. 13.
    Wang, M., Si, T., Luo, X.: Experimental study on the interaction of planar shock wave with polygonal helium cylinders. Shock Waves 25, 347 (2015).  https://doi.org/10.1007/s00193-014-0528-1
  14. 14.
    Luo, X., Dong, P., Si, T., Zhai, Z.: The Richtmyer–Meshkov instability of a ‘V’ shaped air/SF\(_6\) interface. J. Fluid Mech. 802, 186 (2016).  https://doi.org/10.1017/jfm.2016.476
  15. 15.
    McFarland, J.A., Greenough, J.A., Ranjan, D.: Computational parametric study of a Richtmyer–Meshkov instability for an inclined interface. Phys. Rev. E 84, 026303 (2011).  https://doi.org/10.1103/PhysRevE.84.026303
  16. 16.
    McFarland, J.A., Reilly, D., Black, W., Greenough, J.A., Ranjan, D.: Modal interactions between a large-wavelength inclined interface and small-wavelength multimode perturbations in a Richtmyer–Meshkov instability. Phys. Rev. E 92, 013023 (2015).  https://doi.org/10.1103/PhysRevE.92.013023
  17. 17.
    Hosseini, S.H.R., Ondera, O., Takayama, K.: Characteristics of an annular vertical diaphragmless shock tube. Shock Waves 10, 151 (2000).  https://doi.org/10.1007/s001930050001
  18. 18.
    Hosseini, S.H.R., Takayama, K.: Experimental study of Richtmyer–Meshkov instability induced by cylindrical shock waves. Phys. Fluids 17, 084101 (2005).  https://doi.org/10.1063/1.1964916
  19. 19.
    Biamino, L., Jourdan, G., Mariani, C., Houas, L., Vandenboomgaerde, M., Souffland, D.: On the possibility of studying the converging Richtmyer–Meshkov instability in a conventional shock tube. Exp. Fluids 56, 26 (2015).  https://doi.org/10.1007/s00348-015-1903-0
  20. 20.
    Si, T., Long, T., Zhai, Z., Luo, X.: Experimental investigation of cylindrical converging shock waves interacting with a polygonal heavy gas cylinder. J. Fluid Mech. 784, 225 (2015).  https://doi.org/10.1017/jfm.2015.581
  21. 21.
    Luo, X., Ding, J., Wang, M., Zhai, Z., Si, T.: A semi-annular shock tube for studying cylindrically converging Richtmyer–Meshkov instability. Phys. Fluids 27(9), 091702 (2015).  https://doi.org/10.1063/1.4931929
  22. 22.
    Bell, G.I.: Taylor instability on cylinders and spheres in the small amplitude approximation. Report No. LA-1321, LANL 1321 (1951)Google Scholar
  23. 23.
    Plesset, M.S.: On the stability of fluid flows with spherical symmetry. J. Appl. Phys. 25, 96 (1954).  https://doi.org/10.1063/1.1721529
  24. 24.
    Mikaelian, K.O.: Rayleigh–Taylor and Richtmyer–Meshkov instabilities and mixing in stratified cylindrical shells. Phys. Fluids 17, 094105 (2005).  https://doi.org/10.1063/1.2046712
  25. 25.
    Matsuoka, C., Nishihara, K.: Fully nonlinear evolution of a cylindrical vortex sheet in incompressible Richtmyer–Meshkov instabilitys. Phys. Rev. E 73, 055304 (2006).  https://doi.org/10.1103/PhysRevE.73.055304
  26. 26.
    Liu, W.H., Yu, C.P., Ye, W.H., Wang, L.F., He, X.T.: Nonlinear theory of classical cylindrical Richtmyer–Meshkov instability for arbitrary Atwood numbers. Phys. Plasmas 21, 062119 (2014).  https://doi.org/10.1063/1.4883222
  27. 27.
    Wang, L.F., Wu, J.F., Guo, H.Y., Ye, W.H., Liu, J., Zhang, W.Y., He, X.T.: Weakly nonlinear Bell–Plesset effects for a uniformly converging cylinder. Phys. Plasmas 22, 082702 (2015).  https://doi.org/10.1063/1.4928088
  28. 28.
    Zhang, Q., Graham, M.J.: A numerical study of Richtmyer–Meshkov instability driven by cylindrical shocks. Phys. Fluids 10, 974 (1998).  https://doi.org/10.1063/1.869624
  29. 29.
    Zhang, Q., Graham, M.J.: Scaling laws for unstable interfaces driven by strong shocks in cylindrical geometry. Phys. Rev. Lett. 79, 2674 (1997).  https://doi.org/10.1103/PhysRevLett.79.2674
  30. 30.
    Dutta, S., Glimm, J., Grove, J.W., Sharp, D.H., Zhang, Y.: Spherical Richtmyer–Meshkov instability for axisymmetric flow. Math. Comput. Simul. 65, 417 (2004).  https://doi.org/10.1016/j.matcom.2004.01.020
  31. 31.
    Tian, B., Fu, D., Ma, Y.: Numerical investigation of Richtmyer–Meshkov instability driven by cylindrical shocks. Acta Mech. Sin. 22, 9 (2006).  https://doi.org/10.1007/s10409-005-0083-1
  32. 32.
    Tian, B., Shen, W., Jiang, S., Wang, S., Yan, L.: A global arbitrary Lagrangian–Eulerian method for stratified Richtmyer–Meshkov instability. Comput. Fluids 46, 113 (2011).  https://doi.org/10.1016/j.compfluid.2011.01.022
  33. 33.
    Bai, J.S., Li, P., Tan, D.W.: Simulation of the intability experiments in stratified cylindrical shells. China Phys. Lett. 23, 1850–1852 (2006).  https://doi.org/10.1088/0256-307X/23/7/054
  34. 34.
    Zheng, J.G., Lee, T.S., Winoto, S.H.: Numerical simulation of Richtmyer–Meshkov instability driven by imploding shocks. Math. Comput. Simul. 79, 749 (2008).  https://doi.org/10.1016/j.matcom.2008.05.005
  35. 35.
    Lombardini, M., Pullin, D.I., Meiron, D.I.: Turbulent mixing driven by spherical implosions. Part 1. Flow description and mixing-layer growth. J. Fluid Mech. 748, 85 (2014).  https://doi.org/10.1017/jfm.2014.161
  36. 36.
    Lombardini, M., Pullin, D.I., Meiron, D.I.: Turbulent mixing driven by spherical implosions. Part 2. Turbulence statistics. J. Fluid Mech. 748, 113 (2014).  https://doi.org/10.1017/jfm.2014.163
  37. 37.
    Ding, J., Si, T., Yang, J., Lu, X., Zhai, Z., Luo, X.: Shock tube experiments on converging Richtmyer–Meshkov instability. Phys. Rev. Lett. 119, 014501 (2017).  https://doi.org/10.1103/PhysRevLett.119.014501
  38. 38.
    Lei, F., Ding, J., Si, T., Zhai, Z., Luo, X.: Experimental study on a sinusoidal air/SF\(_6\) interface accelerated by a cylindrically converging shock. J. Fluid Mech. 826, 819 (2017).  https://doi.org/10.1017/jfm.2017.506
  39. 39.
    Zhai, Z., Si, T., Luo, X., Yang, J.: On the evolution of spherical gas interfaces accelerated by a planar shock wave. Phys. Fluids 23, 084104 (2011).  https://doi.org/10.1063/1.3623272
  40. 40.
    Wang, M., Si, T., Luo, X.: Generation of polygonal gas interfaces by soap film for Richtmyer–Meshkov instability study. Exp. Fluids 54, 1427 (2013).  https://doi.org/10.1007/s00348-012-1427-9
  41. 41.
    Wang, X., Yang, D., Wu, J., Luo, X.: Interaction of a weak shock wave with a discontinuous heavy-gas cylinder. Phys. Fluids 27(6), 064104 (2015).  https://doi.org/10.1063/1.4922613
  42. 42.
    Zhai, Z., Liu, C., Qin, F., Yang, J., Luo, X.: Generation of cylindrical converging shock waves based on shock dynamics theory. Phys. Fluids 22, 041701 (2010).  https://doi.org/10.1063/1.3392603
  43. 43.
    Si, T., Zhai, Z., Luo, X.: Experimental study of Richtmyer–Meshkov instability in a cylindrical converging shock tube. Laser Part. Beams 32, 343 (2014).  https://doi.org/10.1017/S0263034614000202
  44. 44.
    Perry, R.W., Kantrowitz, A.: The production and stability of converging shock waves. J. Appl. Phys. 22, 878 (1951).  https://doi.org/10.1063/1.1700067
  45. 45.
    Hosseini, S.H.R., Takayama, K.: Experimental study of toroidal shock wave focusing in a compact vertical annular diaphragmless shock tube. Shock Waves 20, 1 (2010).  https://doi.org/10.1007/s00193-009-0227-5
  46. 46.
    Fincke, J.R., Lanier, N.E., Batha, S.H., Luo, X.: Effect of convergence on growth of the Richtmyer–Meshkov instability. Laser Part. Beams 23(01), 21 (2005).  https://doi.org/10.1017/S0263034605050068

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Advanced Propulsion Laboratory, Department of Modern MechanicsUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations