Advertisement

Shock Waves

, Volume 29, Issue 2, pp 339–353 | Cite as

Analysis of mixing in high-explosive fireballs using small-scale pressurised spheres

  • S. CourtiaudEmail author
  • N. Lecysyn
  • G. Damamme
  • T. Poinsot
  • L. Selle
Original Article

Abstract

After the detonation of an oxygen-deficient homogeneous high explosive, a phase of turbulent combustion, called afterburning, takes place at the interface between the rich detonation products and air. Its modelling is instrumental for the accurate prediction of the performance of these explosives. Because of the high temperature of detonation products, the chemical reactions are mixing-driven. Modelling afterburning thus relies on the precise description of the mixing process inside fireballs. This work presents a joint numerical and experimental study of a non-reacting reduced-scale set-up, which uses the compressed balloon analogy and does not involve the detonation of a high explosive. The set-up produces a flow similar to the one caused by a spherical detonation and allows focusing on the mixing process. The numerical work is composed of 2D and 3D LES simulations of the set-up. It is shown that grid independence can be reached by imposing perturbations at the edge of the fireball. The results compare well with the existing literature and give new insights on the mixing process inside fireballs. In particular, they highlight the fact that the mixing layer development follows an energetic scaling law but remains sensitive to the density ratio between the detonation products and air.

Keywords

Homogeneous high explosives Afterburning Turbulent mixing LES Compressed balloon method 

References

  1. 1.
    Kuhl, A.L.: Spherical mixing layers in explosions. In: Dynamics of Exothermicity: In Honor of Antoni Kazimierz Oppenheim, pp. 291–320. Gordon and Breach (1996)Google Scholar
  2. 2.
    Rayleigh, L.: Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc. s1–14(1), 170–177 (1882).  https://doi.org/10.1112/plms/s1-14.1.170 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Taylor, G.: The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc. R. Soc. Lond. Ser. A 201, 192 (1950).  https://doi.org/10.1098/rspa.1950.0052 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Richtmyer, R.: Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math. 13(2), 297 (1960).  https://doi.org/10.1002/cpa.3160130207 MathSciNetCrossRefGoogle Scholar
  5. 5.
    Meshkov, E.E.: Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn. 4(5), 101–104 (1969).  https://doi.org/10.1007/BF01015969 CrossRefGoogle Scholar
  6. 6.
    Milne, A.M., Cargill, S.B., Longbottom, A.W.: Modelling of complex blast. Int. J. Prot. Struct. 7(3), 325–339 (2016).  https://doi.org/10.1177/2041419616661431 CrossRefGoogle Scholar
  7. 7.
    Boyer, D.W.: An experimental study of the explosion generated by a pressurized sphere. J. Fluid Mech. 9, 401–429 (1960).  https://doi.org/10.1017/S0022112060001195 CrossRefzbMATHGoogle Scholar
  8. 8.
    Larcher, M., Casadei, F.: Explosions in complex geometries—a comparison of several approaches. Int. J. Prot. Struct. 1(2), 169–195 (2010).  https://doi.org/10.1260/2041-4196.1.2.169 CrossRefGoogle Scholar
  9. 9.
    Anisimov, S., Zeldovich, Y.: Rayleigh–Taylor instability of boundary between detonation products and gas in spherical explosion. Pis’ma Zh. Eksp. Teor. Fiz. 3, 1081 (1977)Google Scholar
  10. 10.
    Anisimov, S.I., Zeldovich, Y.B., Inogamov, M.A., Ivanov, M.F.: The Taylor instability of contact boundary between expanding detonation products and a surrounding gas. In: Shock Waves, Explosions, and Detonations, Progress in Astronautics and Aeronautics, vol. 87, pp. 218–227. American Institute of Aeronautics and Astronautics, New York (1983).  https://doi.org/10.2514/5.9781600865602.0218.0227
  11. 11.
    Kuhl, A.L.: Mixing in explosions. Technical Report. UCRL-JC-115690, Lawrence Livermore National Laboratory (1993)Google Scholar
  12. 12.
    Kuhl, A.L., Ferguson, R.E., Priolo, F., Chien, K.Y., Collins, J.P.: Baroclinic mixing in HE fireballs. Technical Report. UCRL-JC-114982, Lawrence Livermore National Laboratory (1993)Google Scholar
  13. 13.
    Balakrishnan, K., Genin, F., Nance, D., Menon, S.: Numerical study of blast characteristics from detonation of homogeneous explosives. Shock Waves 20, 147–162 (2010).  https://doi.org/10.1007/s00193-009-0236-4 CrossRefzbMATHGoogle Scholar
  14. 14.
    Plesset, M.S.: On the stability of fluid flows with spherical symmetry. J. Appl. Phys. 25, 96–98 (1954).  https://doi.org/10.1063/1.1721529 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Youngs, D.L.: Numerical simulation of turbulent mixing by Rayleigh–Taylor instability. Physica D 12, 32–44 (1984).  https://doi.org/10.1016/0167-2789(84)90512-8 CrossRefGoogle Scholar
  16. 16.
    Anuchina, N.N., Kucherenko, Y.A., Neuvazhaev, V.E., Ogibina, V.N., Shibarshov, L.I., Yakolev, V.G.: Turbulent mixing at an accelerating interface between liquids of different density. Fluid Dyn. 13(6), 916–920 (1978).  https://doi.org/10.1007/BF01050969 CrossRefGoogle Scholar
  17. 17.
    Read, K.I.: Experimental investigation of turbulent mixing by Rayleigh–Taylor instability. Physica D 12, 45–58 (1984).  https://doi.org/10.1016/0167-2789(84)90513-X CrossRefGoogle Scholar
  18. 18.
    Bell, G.I.: Taylor instability on cylinders and spheres in the small amplitude approximation. Technical Report. Los Alamos Scientific Laboratory (1951)Google Scholar
  19. 19.
    Mikaelian, K.O.: Rayleigh–Taylor and Richtmyer–Meshkov instabilities and mixing in stratified spherical shells. Phys. Rev. A 42(6), 3400 (1990).  https://doi.org/10.1103/PhysRevA.42.3400 MathSciNetCrossRefGoogle Scholar
  20. 20.
    Mikaelian, K.O.: Rayleigh–Taylor and Richtmyer–Meshkov instabilities and mixing in stratified cylindrical shells. Phys. Fluids 17(9), 094105 (2005).  https://doi.org/10.1063/1.2046712 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
  22. 22.
    Donea, J., Huerta, A.: Finite Element Method for Flow Problems. Wiley, New York (2003).  https://doi.org/10.1002/0470013826 CrossRefGoogle Scholar
  23. 23.
    Colin, O.: Simulations aux grandes échelles de la combustion turbulente prémélangée dans les statoréacteurs. PhD Thesis, Toulouse, INPT (2000)Google Scholar
  24. 24.
    Nicoud, F., Baya Toda, H., Cabrit, O., Bose, S., Lee, J.: Using singular values to build a subgrid-scale model for large eddy simulations. Phys. Fluids 23, 085106 (2011).  https://doi.org/10.1063/1.3623274 CrossRefGoogle Scholar
  25. 25.
    von Neumann, J., Richtmyer, R.: A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 21, 232 (1950).  https://doi.org/10.1063/1.1699639 MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Sachs, R.G.: The dependence of blast on ambient pressure and temperature. Technical Report. BRL Report 466, Aberdeen Proving Ground (1944)Google Scholar
  27. 27.
    Bach, G.G., Lee, J.H.S.: An analytical solution for blast waves. AIAA J. 8(2), 271–275 (1970).  https://doi.org/10.2514/3.5655 CrossRefGoogle Scholar
  28. 28.
    Kuhl, A.L., Bell, J.B., Beckner, V.E., Balakrishnan, K., Aspden, A.J.: Spherical combustion clouds in explosions. Shock Waves 23, 233–249 (2013).  https://doi.org/10.1007/s00193-012-0410-y CrossRefGoogle Scholar
  29. 29.
    Frost, D.L., Zarei, Z., Zhang, F.: Instability of combustion products interface from detonation of heterogeneous explosives. In: 20th International Colloquium on the Dynamics of Explosions and Reactive Systems, Montreal, Canada, Paper 198 (2005)Google Scholar
  30. 30.
    Brode, H.: Blast wave from a spherical charge. Phys. Fluids 2, 217–229 (1959).  https://doi.org/10.1063/1.1705911 CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CEA, DAM, CEA-GramatGramatFrance
  2. 2.IMFT, UMR CNRS/INP-UPS 5502ToulouseFrance

Personalised recommendations