Advertisement

Comparison of measurement systems for posterior vaginal wall prolapse on magnetic resonance imaging

  • Bing Xie
  • Luyun Chen
  • Zhuowei Xue
  • Emily M. English
  • Dee E. Fenner
  • Kara Gaetke-Udager
  • Giselle E. Kolenic
  • James A. Ashton-Miller
  • John O. DeLanceyEmail author
Original Article
  • 17 Downloads

Abstract

Introduction and hypothesis

A wide variety of reference lines and landmarks have been used in imaging studies to diagnose and quantify posterior vaginal wall prolapse without consensus. We sought to determine which is the best system to (1) identify posterior vaginal wall prolapse and its appropriate cutoff values and (2) assess the prolapse size.

Methods

This was a secondary analysis of sagittal maximal Valsalva dynamic MRI scans from 52 posterior-predominant prolapse cases and 60 comparable controls from ongoing research. All eight existing measurement lines and a new parameter, the exposed vaginal length, were measured. Expert opinions were used to score the prolapse sizes. Simple linear regressions, effect sizes, area under the curve, and classification and regression tree analyses were used to compare these reference systems and determine cutoff values. Linear and ordinal logistic regressions were used to assess the effectiveness of the prolapse size.

Results

Among existing parameters, “the perineal line-internal pubis,” a reference line from the inside of the pubic symphysis to the front tip of the perineal body (cutoff value 0.9 cm), had the largest effect size (1.61), showed the highest sensitivity and specificity to discriminate prolapse with area under the curve (0.91), and explained the most variation (68%) in prolapse size scores. The exposed vaginal length (cutoff value 2.9) outperformed all the existing lines, with the largest effect size (2.09), area under the curve (0.95), and R-squared value (0.77).

Conclusions

The exposed vaginal length performs slightly better than the best of the existing systems, for both diagnosing and quantifying posterior prolapse size. Performance characteristics and evidence-based cutoffs might be useful in clinical practice.

Keywords

Cutoffs Dynamic MRI Exposed vaginal length Magnetic resonance imaging Posterior vaginal wall prolapse Reference line 

Notes

Acknowledgements

This research was supported by the National Institute of Child Health and Human Development SCOR Grant #P50 HD044406. The NIH did not play a role in the study design; in the collection, analysis and interpretation of data; in the writing of the report; or in the decision to submit the article for publication.

Compliance with ethical standards

Conflicts of interest

None.

References

  1. 1.
    Boyles SH, Weber AM, Meyn L. Procedures for pelvic organ prolapse in the United States, 1979-1997. Am J Obstet Gynecol. 2003;188(1):108–15.CrossRefGoogle Scholar
  2. 2.
    da Silva GM, Gurland B, Sleemi A, Levy G. Posterior vaginal wall prolapse does not correlate with fecal symptoms or objective measures of anorectal function. Am J Obstet Gynecol. 2006;195(6):1742–7.CrossRefGoogle Scholar
  3. 3.
    El Sayed RF, Alt CD, Maccioni F, Meissnitzer M, Masselli G, Manganaro L, et al. Magnetic resonance imaging of pelvic floor dysfunction-joint recommendations of the ESUR and ESGAR pelvic floor working group. Eur Radiol. 2017;27(5):2067–85.  https://doi.org/10.1007/s00330-016-4471-7.CrossRefGoogle Scholar
  4. 4.
    Bartram CI, Turnbull GK, Lennard-Jones JE. Evacuation proctography: an investigation of rectal expulsion in 20 subjects without defecatory disturbance. Gastrointest Radiol. 1988;13(1):72–80.CrossRefGoogle Scholar
  5. 5.
    Hale DS, Fenner D. Consistently inconsistent, the posterior vaginal wall. Am J Obstet Gynecol. 2016;214(3):314–20.  https://doi.org/10.1016/j.ajog.2015.09.001.CrossRefGoogle Scholar
  6. 6.
    Dietz HP, Zhang X, Shek KL, Guzman RR. How large does a rectocele have to be to cause symptoms? A 3D/4D ultrasound study. Int Urogynecol J. 2015;26(9):1355–9.  https://doi.org/10.1007/s00192-015-2709-6.CrossRefGoogle Scholar
  7. 7.
    Chen L, Ashton-Miller JA, DeLancey JO. A 3D finite element model of anterior vaginal wall support to evaluate mechanisms underlying cystocele formation. J Biomech. 2009;42(10):1371–7.  https://doi.org/10.1016/j.jbiomech.2009.04.043.CrossRefGoogle Scholar
  8. 8.
    Chen L, Ashton-Miller JA, Hsu Y, DeLancey JO. Interaction among apical support, levator ani impairment, and anterior vaginal wall prolapse. Obstet Gynecol. 2006;108(2):324–32.CrossRefGoogle Scholar
  9. 9.
    Yousuf A, Chen L, Larson K, Ashton-Miller JA, DeLancey JO. The length of anterior vaginal wall exposed to external pressure on maximal straining MRI: relationship to urogenital hiatus diameter, and apical and bladder location. Int Urogynecol J. 2014;25(10):1349–56.  https://doi.org/10.1007/s00192-014-2372-3.CrossRefGoogle Scholar
  10. 10.
    Berger MB, Kolenic GE, Fenner DE, Morgan DM, DeLancey JOL. Structural, functional, and symptomatic differences between women with rectocele versus cystocele and normal support. Am J Obstet Gynecol. 2018;218(5):510.e1–8.  https://doi.org/10.1016/j.ajog.2018.01.033.CrossRefGoogle Scholar
  11. 11.
    Larson KA, Hsu Y, Chen L, Ashton-Miller JA, DeLancey JO. Magnetic resonance imaging-based three-dimensional model of anterior vaginal wall position at rest and maximal strain in women with and without prolapse. Int Urogynecol J. 2010;21(9):1103–9.  https://doi.org/10.1007/s00192-010-1161-x.CrossRefGoogle Scholar
  12. 12.
    Tumbarello JA, Hsu Y, Lewicky-Gaupp C, Rohrer S, DeLancey JO. Do repetitive Valsalva maneuvers change maximum prolapse on dynamic MRI? Int Urogynecol J. 2010;21(10):1247–51.  https://doi.org/10.1007/s00192-010-1178-1.CrossRefGoogle Scholar
  13. 13.
    Morren GL, Balasingam AG, Wells JE, Hunter AM, Coates RH, Perry RE. Triphasic MRI of pelvic organ descent: sources of measurement error. Eur J Radiol. 2005;54(2):276–83.CrossRefGoogle Scholar
  14. 14.
    Comiter CV, Vasavada SP, Barbaric ZL, Gousse AE, Raz S. Grading pelvic prolapse and pelvic floor relaxation using dynamic magnetic resonance imaging. Urology. 1999;54(3):454–7.CrossRefGoogle Scholar
  15. 15.
    Lakeman MM, Zijta FM, Peringa J, Nederveen AJ, Stoker J, Roovers JP. Dynamic magnetic resonance imaging to quantify pelvic organ prolapse: reliability of assessment and correlation with clinical findings and pelvic floor symptoms. Int Urogynecol J. 2012;23(11):1547–54.  https://doi.org/10.1007/s00192-012-1772-5.CrossRefGoogle Scholar
  16. 16.
    Fauconnier A, Zareski E, Abichedid J, Bader G, Falissard B, Fritel X. Dynamic magnetic resonance imaging for grading pelvic organ prolapse according to the international continence society classification: which line should be used? Neurourol Urodyn. 2008;27(3):191–7.CrossRefGoogle Scholar
  17. 17.
    Singh K, Reid WM, Berger LA. Assessment and grading of pelvic organ prolapse by use of dynamic magnetic resonance imaging. Am J Obstet Gynecol. 2001;185(1):71–7.CrossRefGoogle Scholar
  18. 18.
    Lienemann A, Sprenger D, Janssen U, Grosch E, Pellengahr C, Anthuber C. Assessment of pelvic organ descent by use of functional cine-MRI: which reference line should be used? Neurourol Urodyn. 2004;23(1):33–7.CrossRefGoogle Scholar
  19. 19.
    Cortes E, Reid WM, Singh K, Berger L. Clinical examination and dynamic magnetic resonance imaging in vaginal vault prolapse. Obstet Gynecol. 2004;103(1):41–6.CrossRefGoogle Scholar
  20. 20.
    Woodfield CA, Hampton BS, Sung V, Brody JM. Magnetic resonance imaging of pelvic organ prolapse: comparing pubococcygeal and midpubic lines with clinical staging. Int Urogynecol J Pelvic Floor Dysfunct. 2009;20(6):695–701.  https://doi.org/10.1007/s00192-009-0865-2.CrossRefGoogle Scholar
  21. 21.
    Dietz HP, Steensma AB. Posterior compartment prolapse on two-dimensional and three-dimensional pelvic floor ultrasound: the distinction between true rectocele, perineal hypermobility and enterocele. Ultrasound Obstet Gynecol. 2005;26(1):73–7.CrossRefGoogle Scholar
  22. 22.
    Kenton K, Shott S, Brubaker L. The anatomic and functional variability of rectoceles in women. Int Urogynecol J Pelvic Floor Dysfunct. 1999;10(2):96–9.CrossRefGoogle Scholar
  23. 23.
    Lewicky-Gaupp C, Yousuf A, Larson KA, Fenner DE, Delancey JO. Structural position of the posterior vagina and pelvic floor in women with and without posterior vaginal prolapse. Am J Obstet Gynecol. 2010;202(5):497.e1–6.  https://doi.org/10.1016/j.ajog.2010.01.001.CrossRefGoogle Scholar

Copyright information

© The International Urogynecological Association 2019

Authors and Affiliations

  • Bing Xie
    • 1
    • 2
  • Luyun Chen
    • 3
  • Zhuowei Xue
    • 4
  • Emily M. English
    • 2
  • Dee E. Fenner
    • 2
  • Kara Gaetke-Udager
    • 5
  • Giselle E. Kolenic
    • 2
  • James A. Ashton-Miller
    • 3
    • 6
  • John O. DeLancey
    • 2
    Email author
  1. 1.Department of Obstetrics and GynecologyPeking University People’s HospitalBeijingChina
  2. 2.Department of Obstetrics and GynecologyUniversity of MichiganAnn ArborUSA
  3. 3.Department of Biomedical EngineeringUniversity of MichiganAnn ArborUSA
  4. 4.Shanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghaiChina
  5. 5.Department of RadiologyUniversity of MichiganAnn ArborUSA
  6. 6.Department of Mechanical EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations