Advertisement

Journal of Geodesy

, Volume 93, Issue 12, pp 2585–2603 | Cite as

Combined precise orbit determination of GPS and GLONASS with ambiguity resolution

  • Xiangdong An
  • Xiaolin Meng
  • Hua Chen
  • Weiping JiangEmail author
  • Ruijie Xi
  • Qusen Chen
Original Article
  • 182 Downloads

Abstract

Precise orbit products of Global Navigation Satellite Systems (GNSS) are an essential precondition for precise positioning. Ambiguity resolution (AR) can enhance the orbit accuracy in precise orbit determination (POD). To improve the quality of orbits, we propose a method of combined POD for GPS and GLONASS with AR. Firstly, GLONASS wide-lane and narrow-lane fractional cycle biases (FCBs) are daily estimated. Then, by applying the estimated FCBs, GLONASS and GPS double-differenced wide-lane and narrow-lane ambiguities are successfully resolved, even for the baselines of up to several thousand kilometers. Finally, the ambiguity-resolved solutions are achieved by introducing the constraints of the resolved ambiguities into the real-valued solutions. To prove the contribution of the AR to GPS and GLONASS POD, a network including 141 sites is processed over 2018. The results show that the receiver types and firmware versions seriously affect the stability of the daily wide-lane FCBs. The fluctuation of the inter-system biases between two adjacent days is obviously larger than a half narrow-lane wavelength, causing an irregular change of the daily narrow-lane FCBs. After FCB calibration, the success rate of GLONASS can reach up to 90% over the whole year, which is at the same level compared with that of GPS. The improvements of GLONASS and GPS orbits after AR are confirmed by the orbit comparison with the International GNSS Service final products, the orbit misclosures at day boundaries and satellite laser ranging residuals. Due to some other issues, such as the GLONASS frequency-division multiple access and the high noise of observations, the improvement of GLONASS orbit is still less obvious than that of GPS orbit.

Keywords

GPS and GLONASS Ambiguity resolution for long baselines Precise orbit determination Inter-frequency bias 

Notes

Acknowledgements

We thank IGS, CODE and ILRS for providing GPS and GLONASS data, precise products and SLR data. The data selected from American CORS in this study is also acknowledged. This study is supported by The Major Technology Innovation Project of Hubei Province of China (2018AAA066), The National Science Fund for Distinguished Young Scholars (No. 41525014), The Natural Science Innovation Group Foundation of China (No. 41721003), The National Nature Science Foundation of China (No. 41704030) and Changjiang Scholars program. The Chinese Scholarship Council (CSC) has provided the first author a scholarship which allows him to visit University of Nottingham for 2 years to research and study in the UK from November 2017. Miss Roxanne Parnham at the Sino-UK Geospatial Engineering Centre of the University of Nottingham is acknowledged for the proofreading. We thank all anonymous reviewers for their valuable, constructive and prompt comments.

References

  1. Altamimi Z, Rebischung P, Métivier L, Collilieux X (2016) ITRF2014: a new release of the international terrestrial reference frame modeling nonlinear station motions. J Geophys Res Solid Earth 121(8):6109–6131CrossRefGoogle Scholar
  2. Banville S, Collins P, Lahaye F (2013) Concepts for undifferenced GLONASS ambiguity resolution. In: Proceedings of ION GNSS 2013, Institute of Navigation, Nashville, Tennessee, USA, Sept 16–20, pp 1186–1197Google Scholar
  3. Bar-Sever YE (1996) A new model for GPS yaw attitude. J Geod 70(11):714–723CrossRefGoogle Scholar
  4. Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M, Verdun A (1994) Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): theory and initial results. Manuscr Geod 19:367–384Google Scholar
  5. Bizouard C, Gambis D (2011) The combined solution C04 for Earth orientation parameters consistent with international terrestrial reference frame 2008. IERS notice. http://hpiers.obspm.fr/iers/eop/eopc04/C04.guide.pdf. Accessed 28 July 2015
  6. Blewitt G (1989) Carrier phase ambiguity resolution for the global positioning system applied to geodetic baselines up to 2000 km. J Geophys Res 94(B8):10187–10203CrossRefGoogle Scholar
  7. Blewitt G (1990) An automatic editing algorithm for GPS data. Geophys Res Lett 17(3):199–202CrossRefGoogle Scholar
  8. Boehm J, Niell A, Tregoning P, Schuh H (2006) Global mapping function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33(8):L07304Google Scholar
  9. Bruyninx C (2007) Comparing GPS-only with GPS + GLONASS positioning in a regional permanent GNSS network. GPS Solut 11(2):97–106CrossRefGoogle Scholar
  10. Cai C, Gao Y (2013) Modeling and assessment of combined GPS/GLONASS precise point positioning. GPS Solut 17(2):223–236CrossRefGoogle Scholar
  11. Chen G, Herring TA (1997) Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. J Geophys Res 102(B9):20489–20502CrossRefGoogle Scholar
  12. Cohen H (1993) A course in computational algebraic number theory. Springer, BerlinCrossRefGoogle Scholar
  13. Dach R, Schaer S, Lutz S, Bock H, Orliac E, Prange L, Thaller D, Mervart L, Jäggi A, Beutler G, Brockmann E, Ineichen D, Wiget A, Weber G, Habrich H, Ihde J, Steigenberger P, Hugentobler U (2012) Annual center reports: Center for Orbit Determination in Europe (CODE). In: Meindl M, Dach R, Jean Y, Astronomical Institute, University of Bern (eds) International GNSS Service, Technical Report 2011, printed by IGS Central Bureau, Pasadena, CA, USA, pp 29–40Google Scholar
  14. Dilssner F, Springer T, Gienger G, Dow J (2011) The GLONASS-M satellite yaw-attitude model. Adv Space Res 47(1):160–171CrossRefGoogle Scholar
  15. Dong D, Bock Y (1989) Global Positioning System network analysis with phase ambiguity resolution applied to crustal deformation studies in California. J Geophys Res 94(B4):3949–3966CrossRefGoogle Scholar
  16. Förste C, Schmidt R, Stubenvoll R, Flechtner F, Meyer U, König R, Neumayer H, Biancale R, Lemoine J, Bruinsma S, Loyer S, Barthelmes F, Esselborn S (2008) The GeoForschungsZentrumPotsdam/Groupe de Recherche de Gèodésie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGENGL04C. J Geod 82(7):331–346CrossRefGoogle Scholar
  17. Fritsche M, Sośnica K, Rodríguez-Solano C, Steigenberger P, Wang K, Dietrich R, Dach R, Hugentobler U, Rothacher M (2014) Homogeneous reprocessing of GPS, GLONASS and SLR observations. J Geod 88(8):625–642CrossRefGoogle Scholar
  18. Ge M, Gendt G, Dick G, Zhang FP (2005) Improving carrier-phase ambiguity resolution in global GPS network solutions. J Geod 79(1–3):103–110CrossRefGoogle Scholar
  19. Ge M, Gendt G, Dick G, Zhang F, Rothacher M (2006) A new data processing strategy for huge GNSS global networks. J Geod 80(4):199–203CrossRefGoogle Scholar
  20. Ge M, Gendt G, Rothacher M, Shi C, Liu J (2008) Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. J Geod 82(7):389–399.  https://doi.org/10.1007/s00190-007-0187-4 CrossRefGoogle Scholar
  21. Geng J, Meng X, Dodson AH, Ge M, Teferle FN (2010a) Rapid re-convergences to ambiguity-fixed solutions in precise point positioning. J Geod 84(12):705–714CrossRefGoogle Scholar
  22. Geng J, Meng X, Dodson A, Teferle F (2010b) Integer ambiguity resolution in precise point positioning: method comparison. J Geod 84(9):569–581CrossRefGoogle Scholar
  23. Griffiths J, Ray J (2009) On the precision and accuracy of IGS orbits. J Geod 83(3–4):277–287CrossRefGoogle Scholar
  24. Henkel P, Mittmann U, Iafrancesco M (2016) Real-time kinematic positioning with GPS and GLONASS. In: Proceedings of 24th European signal processing conference (EUSIPCO), IEEE, Budapest, Hungary, pp 1–5Google Scholar
  25. Jiang W, An X, Chen H, Zhao W (2017) A new method for GLONASS inter-frequency bias estimation based on long baselines. GPS Solut 21(4):1765–1779CrossRefGoogle Scholar
  26. Johnston G, Riddell A, Hausler G (2017) The international GNSS service. In: Teunissen P, Montenbruck O (eds) Handbook of global navigation satellite systems. Springer, Berlin.  https://doi.org/10.1007/978-3-319-42928-1 CrossRefGoogle Scholar
  27. Li P, Zhang X (2014) Integrating GPS and GLONASS to accelerate convergence and initialization times of precise point positioning. GPS Solut 18(3):461–471CrossRefGoogle Scholar
  28. Li X, Ge M, Dai X, Ren X, Fritsche M, Wickert J, Schuh H (2015) Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. J Geod 89(7):607–635CrossRefGoogle Scholar
  29. Liu J, Ge M (2003) PANDA software and its preliminary result of positioning and orbit determination. Wuhan Univ J Nat Sci 8(2B):603–609Google Scholar
  30. Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56(5–6):394–415CrossRefGoogle Scholar
  31. Melbourne WG (1985) The case for ranging in GPS-based geodetic systems. In: Proceedings of first international symposium on precise positioning with the global positioning system, US, pp 373–386Google Scholar
  32. Mervart L (1995) Ambiguity resolution techniques in geodetic and geodynamic applications of the global positioning system. Ph.D. Thesis, University of BerneGoogle Scholar
  33. Pearlman M, Degnan J, Bosworth J (2002) The international laser ranging service. Adv Space Res 30(2):135–143CrossRefGoogle Scholar
  34. Petit G, Luzum B (2010) IERS conventions 2010. No. 36 in IERS Technical Note, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, GermanyGoogle Scholar
  35. Pratt M, Burke B, Misra P (1998) Single-epoch integer ambiguity resolution with GPS–GLONASS L1–L2 data. Proc ION GNSS 1998:389–398Google Scholar
  36. Rebischung P, Schmid R (2016) IGS14/igs14.atx: a new framework for the IGS products. In: AGU fall meeting 2016, San Francisco, America, 12–16 DecemberGoogle Scholar
  37. Reußner N, Wanninger L (2011) GLONASS inter-frequency biases and their effects on RTK and PPP phase ambiguity resolution. Proc ION GNSS 2011:712–716Google Scholar
  38. Shi C, Zhao Q, Geng J, Lou Y, Ge M, Liu J (2008) Recent development of PANDA software in GNSS data processing. In: Proceedings of SPIE 7285, international conference on Earth observation data processing and analysis (ICEODPA), 72851S (December 29, 2008).  https://doi.org/10.1117/12.816261
  39. Shi C, Yi W, Song W, Lou Y, Yao Y, Zhang R (2013) GLONASS pseudorange inter-channel biases and their effects on combined GPS/GLONASS precise point positioning. GPS Solut 17(4):439–451CrossRefGoogle Scholar
  40. Sleewagen J, Simsky A, Wilde WD, Boon F, Willems T (2012) Demystifying GLONASS inter-frequency carrier phase biases. Inside GNSS 7(3):57–61Google Scholar
  41. Sośnica K, Thaller D, Dach R, Steigenberger P, Beutler G, Arnold D, Jäggi A (2015) Satellite laser ranging to GPS and GLONASS. J Geod 89(7):725–743CrossRefGoogle Scholar
  42. Springer TA, Beutler G, Rothacher M (1999) A new solar radiation pressure model for the GPS satellites. GPS Solut 3(2):50–62CrossRefGoogle Scholar
  43. Wanninger L (2012) Phase inter-frequency biases of GLONASS receivers. J Geod 86(2):139–148CrossRefGoogle Scholar
  44. Wu JT, Wu SC, Hajj GA, Bertiger WI, Lichten SM (1993) Effects of antenna orientation on GPS carrier phase. Manuscr Geod 18:91–98Google Scholar
  45. Wübbena G (1985) Software developments for geodetic positioning with GPS using TI-4100 code and carrier measurements. In: Proceedings of first international symposium on precise positioning with the global positioning system, USA, pp 403–412Google Scholar
  46. Zumberge J, Heflin M, Jefferson D, Watkins M, Webb F (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res Solid Earth 102(B3):5005–5017CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.GNSS Research CenterWuhan UniversityWuhanChina
  2. 2.Nottingham Geospatial InstituteThe University of NottinghamNottinghamUK
  3. 3.School of Geodesy and GeomaticsWuhan UniversityWuhanChina
  4. 4.Key Laboratory of Geospace Environment and Geodesy, Ministry of EducationWuhan UniversityWuhanChina

Personalised recommendations