Advertisement

Coastal gravity field refinement by combining airborne and ground-based data

  • Yihao WuEmail author
  • A. AbulaitijiangEmail author
  • W. E. Featherstone
  • J. C. McCubbine
  • O. B. Andersen
Original Article
  • 115 Downloads

Abstract

Gravity field modelling in coastal region faces challenges due to the degradation of the quality of altimeter data and poor coverage of gravimetric measurements. Airborne gravimetry can provide seamless measurements both onshore and offshore with uniform accuracies, which may alleviate the coastal zone problem. We study the role of airborne data for gravity field recovery in a coastal region and the possibility to validate coastal gravity field model against recent altimetry data (CryoSat-2, Jason-1, and SARAL/Altika). Moreover, we combine airborne and ground-based gravity data for regional refinement and quantify and validate the contribution introduced by airborne data. Numerical experiments in the Gippsland Basin over the south-eastern coast of Australia show that the effects introduced by airborne gravity data appear as small-scale patterns on the centimetre scale in terms of quasi-geoid heights. Numerical results demonstrate that the combination of airborne data improves the coastal gravity field, and the recent altimetry data can be potentially used to validate the high-frequency signals introduced by airborne data. The validation against recent altimetry data demonstrates that the combination of airborne measurements improves the coastal quasi-geoid, by ~ 5 mm, compared with a model computed from terrestrial and altimetry-derived gravity anomalies alone. These results show that the recently released altimetry data with relatively denser spatial resolutions and higher accuracies than older altimeter data may be beneficial for gravity field model assessment in coastal areas.

Keywords

Coastal gravity field modelling Airborne gravimetry Jason-1 CryoSat-2 SARAL/Altika data 

Notes

Acknowledgements

The authors would like to give sincerest thanks to the three anomalous reviewers for the beneficial suggestions and comments, which are of great value for improving the manuscript. The authors also thank the Editor and Associate Editor for their kind assistances and constructive comments. Thanks to Prof. Roland Klees and Dr. Cornelis Slobbe from Delft University of Technology for kindly providing their original software. We gratefully acknowledge the CarbonNet Project Airborne Gravity Survey over Gippsland contracted by Department of Primary Industries of Victoria State in Australia. This study was supported by the Natural Science Foundation of Jiangsu Province, China (No. BK20190498), the Fundamental Research Funds for the Central Universities (No. 2018B07314), the State Scholarship Fund from Chinese Scholarship Council (No. 201306270014), the National Natural Science Foundation of China (Nos. 41830110, 41931074), the Open Research Fund Program of the State Key Laboratory of Geodesy and Earth’s Dynamics (No. SKLGED2018-1-2-E), and the Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan University (No. 17-01-09).

Author contributions

All the authors have contributed to designing the study and writing the manuscript. YW and AA initiated the study, designed the numerical experiments, and wrote the manuscript. WF, JM, and OA provided the data and supplied beneficial suggestions. YW finalized the manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abulaitijiang A, Andersen OB, Stenseng L (2015) Coastal sea level from inland CryoSat-2 interferometric SAR altimetry. Geophys Res Lett 42(6):1841–1847.  https://doi.org/10.1002/2015GL063131 CrossRefGoogle Scholar
  2. Amos MJ, Featherstone WE (2004) A comparison of gridding techniques for terrestrial gravity observations in New Zealand. In: Proceedings of gravity, geoid and space missions symposium 2004, Porto, PortugalGoogle Scholar
  3. Andersen OB, Knudsen P (2000) The role of satellite altimetry in gravity field modelling in coastal areas. Phys Chem Earth 25(1):17–24.  https://doi.org/10.1016/S1464-1895(00)00004-1 CrossRefGoogle Scholar
  4. Andersen OB, Knudsen P (2009) DNSC08 mean sea surface and mean dynamic topography models. J Geophys Res 114:C11001.  https://doi.org/10.1029/2008JC005179 CrossRefGoogle Scholar
  5. Andersen OB, Knudsen P, Berry PAM, Kenyon S, Trimmer R (2010) Recent developments in high-resolution global gravity field modeling. Lead Edge 29(5):540–545.  https://doi.org/10.1190/1.3422451 CrossRefGoogle Scholar
  6. Andersen OB, Scharroo R (2011) Range and geophysical corrections in coastal regions: and implications for mean sea surface determination. In: Vignudelli S et al (eds) Coastal altimetry. Springer, BerlinGoogle Scholar
  7. Andersen OB, Piccioni G, Knudsen P, Stenseng L (2015) The DTU15 mean sea surface and mean dynamic topography—focusing on Arctic issues and development. In: OSTST meeting. Reston, USAGoogle Scholar
  8. Andersen OB, Nielsen K, Knudsen P, Hughes CW, Bingham R, Fenoglio-Marc L, Gravelle M, Kern M, Polo SP (2018) Improving the coastal mean dynamic topography by geodetic combination of tide gauge and satellite altimetry. Mar Geod 41(6):517–545.  https://doi.org/10.1080/01490419.2018.1530320 CrossRefGoogle Scholar
  9. Barzaghi R, Borghi A, Keller K, Forsberg R, Giori I, Loretti I, Olesen AV, Stenseng L (2009) Airborne gravity tests in the Italian area to improve the geoid model of Italy. Geophys Prospect 57(4):625–632.  https://doi.org/10.1111/j.1365-2478.2008.00776.x CrossRefGoogle Scholar
  10. Bastos L, Cunha S, Forsberg R, Olesen A, Gidskehaug A, Timmen L, Meyer U (2000) On the use of airborne gravimetry in gravity field modelling: experiences from the AGMASCO project. Phys Chem Earth 25(1):1–7.  https://doi.org/10.1016/S1464-1895(00)00004-1 CrossRefGoogle Scholar
  11. Becker S, Brockmann JM, Schuh WD (2014) Mean dynamic topography estimates purely based on GOCE gravity field models and altimetry. Geophys Res Lett 41(6):2063–2069.  https://doi.org/10.1002/2014GL059510 CrossRefGoogle Scholar
  12. Bonnefond P, Laurain O, Exertier P, Boy F, Guinle T, Picot N, Labroue S, Raynal M, Donlon C, Féménias P, Parrinello T, Dinardo S (2018) Calibrating the SAR SSH of Sentinel-3A and CryoSat-2 over the Corsica Facilities. Remote Sens 10(1):92.  https://doi.org/10.3390/rs10010092 CrossRefGoogle Scholar
  13. Brown G (1977) The average impulse response of a rough surface and its applications. IEEE J Ocean Eng 2(1):67–74.  https://doi.org/10.1109/JOE.1977.1145328 CrossRefGoogle Scholar
  14. Chambodut A, Panet I, Mandea M, Diament M, Holschneider M, Jamet O (2005) Wavelet frames: an alternative to spherical harmonic representation of potential fields. Geophys J Int 163(3):875–899.  https://doi.org/10.1111/j.1365-246X.2005.02754.x CrossRefGoogle Scholar
  15. Cipollini P, Beneviste J, Bouffard J, Emery W, Fenoglio-Marc L, Gommenginger C, Griffin D, Hoyer J, Kurapov A, Madsen K, Mercier F, Miller L, Pascual A, Ravichandran M, Shillington F, Snaith H, Strub, T, Vandemark D, Vignudelli S, Wilkin J, Woodworth P, Zavala-Garay J (2010) The role of altimetry in coastal observing systems. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society, vol 2. European Space Agency, WPP-306, pp 181–191.  https://doi.org/10.5270/OceanObs09.cwp.16
  16. Claessens SJ (2012) Evaluation of gravity and altimetry data in australian coastal regions. In: Kenyon S, Pacino M, Marti U (eds) Geodesy for planet earth. international association of geodesy symposia, vol 136. Springer, Berlin, Heidelberg, pp 435–442.  https://doi.org/10.1007/978-3-642-20338-1_52 Google Scholar
  17. Deng X, Featherstone WE (2006) A coastal retracking system for satellite radar altimeter waveforms: application to ERS2 around Australia. J Geophys Res Oceans.  https://doi.org/10.1029/2005JC003039 CrossRefGoogle Scholar
  18. Dunn JR, Ridgway KR (2002) Mapping ocean properties in regions of complex topography. Deep Sea Res 49(3):591–604.  https://doi.org/10.1016/S0967-0637(01)00069-3 CrossRefGoogle Scholar
  19. Featherstone WE (2009) Only use ship-track gravity data with caution: a case-study around Australia. Aust J Earth Sci 56(2):191–195.  https://doi.org/10.1080/08120090802547025 CrossRefGoogle Scholar
  20. Featherstone WE (2010) Satellite and airborne gravimetry: their role in geoid determination and some suggestions. In: Lane R (ed) Airborne gravity. Geoscience Australia, CanberraGoogle Scholar
  21. Featherstone WE, Filmer MS (2012) The north–south tilt in the Australian Height Datum is explained by the ocean’s mean dynamic topography. J Geophys Res Oceans 117(C8):C08035.  https://doi.org/10.1029/2012JC007974 CrossRefGoogle Scholar
  22. Featherstone WE, Kirby JF, Hirt C, Filmer MS, Claessens SJ, Brown NJ, Hu G, Johnston GM (2011) The AUSGeoid09 model of the Australian Height Datum. J Geod 85(3):133–150.  https://doi.org/10.1007/s00190-010-0422-2 CrossRefGoogle Scholar
  23. Featherstone WE, McCubbine JC, Brown NJ, Claessens SJ, Filmer MS, Kirby JF (2018a) The first Australian gravimetric quasigeoid model with location-specific uncertainty estimates. J Geod 92(2):149–168.  https://doi.org/10.1007/s00190-017-1053-7 CrossRefGoogle Scholar
  24. Featherstone WE, Brown NJ, McCubbine JC, Filmer MS (2018b) Description and release of Australian gravity field model testing data. Aust J Earth Sci 65(3):1–7.  https://doi.org/10.1080/08120099.2018.1412353 CrossRefGoogle Scholar
  25. Fecher T, Pail R, Gruber T (2017) GOCO05c: a new combined gravity field model based on full normal equations and regionally varying weighting. Surv Geophys 38(3):571–590.  https://doi.org/10.1007/s10712-016-9406-y CrossRefGoogle Scholar
  26. Fernandes MJ, Bastos L, Forsberg R, Olesen A, Leite F (2000) Geoid modelling in coastal regions using airborne and satellite data: case study in the Azores. In: Schwarz KP (eds) Geodesy beyond 2000. International Association of Geodesy Symposia, vol 121. Springer, Berlin, Heidelberg, pp 112–117.  https://doi.org/10.1007/978-3-642-59742-8_18 CrossRefGoogle Scholar
  27. Filmer MS, Featherstone WE (2012) A re-evaluation of the offset in the Australian Height Datum between mainland Australia and Tasmania. Mar Geod 35(1):107–119.  https://doi.org/10.1080/01490419.2011.634961 CrossRefGoogle Scholar
  28. Filmer MS, Hughes CW, Woodworth PL, Featherstone WE, Bingham RJ (2018) Comparisons between geodetic and oceanographic approaches to estimate mean dynamic topography for vertical datum unification: evaluation at Australia tide gauge. J Geod 92(12):1413–1437.  https://doi.org/10.1007/s00190-018-1131-5 CrossRefGoogle Scholar
  29. Forsberg R (1984) A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling. Report No. 355, Department of Geodetic Science and Surveying, The Ohio State University, Colombus, Ohio, USAGoogle Scholar
  30. Forsberg R (1987) A new covariance model for inertial gravimetry and gradiometry. J Geophys Res 92(B2):1305–1310.  https://doi.org/10.1029/JB092iB02p01305 CrossRefGoogle Scholar
  31. Forsberg R (2002) Downward continuation of airborne gravity—an Arctic case story. In: Proceedings of the international gravity and geoid commission meeting, ThessalonikiGoogle Scholar
  32. Forsberg R, Tscherning CC (1981) The use of height data in gravity field approximation by collocation. J Geophys Res Solid Earth 86(B9):7843–7854.  https://doi.org/10.1029/JB086iB09p07843 CrossRefGoogle Scholar
  33. Forsberg R, Kenyon S (1995) Downward continuation of airborne gravity data. In: Proceedings of the IAG symposium on airborne gravity field determination. Report 60010, Department of Geomatics Engineering, University of Calgary, Canada, pp 73–80Google Scholar
  34. Forsberg R, Olesen A, Bastos L, Gidskehaug A, Meyer U, Timmen L (2000) Airborne geoid determination. Earth Planets Space 52(10):863–866.  https://doi.org/10.1186/BF03352296 CrossRefGoogle Scholar
  35. Forsberg R, Olesen A, Keller K, Møller M, Gidskehaug A, Solheim D (2001) Airborne gravity and geoid surveys in the arctic and baltic seas. In: Proceedings of international symposium on kinematic systems in geodesy, geomatics and navigation (KIS-2001). Banff, pp 586–593Google Scholar
  36. Forsberg R, Olesen AV, Alshamsi A, Gidskehaug A, Ses S, Kadir M, Peter B (2012a) Airborne gravimetry survey for the marine area of the United Arab Emirates. Mar Geod 35(3):221–232.  https://doi.org/10.1080/01490419.2012.672874 CrossRefGoogle Scholar
  37. Forsberg R, Ses S, Alshamsi A, Hassan A (2012b) Coastal geoid improvement using airborne gravimetric data in the United Arab Emirates. Int J Phys Sci 7(45):6012–6023.  https://doi.org/10.5897/IJPS12.413 CrossRefGoogle Scholar
  38. Förste C, Bruinsma SL, Abrikosov O, Lemoine JM, Schaller T, Götze HJ, Ebbing J, Marty JC, Flechtner F, Balmino R, Biancale R (2014) EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. In: The 5th GOCE User workshop. Paris, FranceGoogle Scholar
  39. Garcia ES, Sandwell DT, Smith WHF (2014) Retracking CryoSat-2, Envisat and Jason-1 radar altimetry waveforms for improved gravity field recovery. Geophys J Int 196(3):1402–1422.  https://doi.org/10.1093/gji/ggt469 CrossRefGoogle Scholar
  40. Gilardoni M, Reguzzoni M, Sampietro D (2015) GECO: a global gravity model by locally combining GOCE data and EGM2008. Stud Geophys Geod 60(2):228–247.  https://doi.org/10.1007/s11200-015-1114-14 CrossRefGoogle Scholar
  41. Heck B, Seitz K (2007) A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling. J Geod 81(2):121–136.  https://doi.org/10.1007/s00190-006-0094-0 CrossRefGoogle Scholar
  42. Hipkin RG, Haines K, Beggan C, Bingley R, Hernandez F, Holt J, Baker T (2004) The geoid EDIN2000 and mean sea surface topography around the British Isles. Geophys J Int 157(2):565–577.  https://doi.org/10.1111/j.1365-246X.2004.01989.x CrossRefGoogle Scholar
  43. Hirt C (2010) Prediction of vertical deflections from high-degree spherical harmonic synthesis and residual terrain model data. J Geod 84(3):179–190.  https://doi.org/10.1007/s00190-009-0354-x CrossRefGoogle Scholar
  44. Hirt C (2013) RTM gravity forward-modelling using topography/bathymetry data to improve high-degree global geopotential models in the coastal zone. Mar Geod 36(2):1–20.  https://doi.org/10.1080/01490419.2013.779334 CrossRefGoogle Scholar
  45. Holschneider M, Iglewska-Nowak I (2007) Poisson wavelets on the sphere. J Fourier Anal Appl 13(4):405–419.  https://doi.org/10.1007/s00041-006-6909-9 CrossRefGoogle Scholar
  46. Holschneider M, Chambodut A, Mandea M (2003) From global to regional analysis of the magnetic field on the sphere using wavelet frames. Phys Earth Planet Inter 135(2–3):107–124.  https://doi.org/10.1016/S0031-9201(02)00210-8 CrossRefGoogle Scholar
  47. Huang J (2017) Determining coastal mean dynamic topography by geodetic methods. Geophys Res Lett 44(21):11125–11128.  https://doi.org/10.1002/2017GL076020 CrossRefGoogle Scholar
  48. Hwang C, Guo J, Deng X, Hsu HY, Liu Y (2006) Coastal gravity anomalies from retracked Geosat/GM altimetry: improvement, limitation and the role of airborne gravity data. J Geod 80(4):204–216.  https://doi.org/10.1007/s00190-006-0052-x CrossRefGoogle Scholar
  49. Idžanović M, Ophaug V, Andersen OB (2017) The coastal mean dynamic topography in Norway observed by CryoSat-2 and GOCE. Geophys Res Lett 44(11):5609–5617.  https://doi.org/10.1002/2017GL073777 CrossRefGoogle Scholar
  50. Jekeli C, Yang HJ, Kwon JH (2013) Geoid determination in South Korea from a combination of terrestrial and airborne gravity anomaly data. J Korean Soc Surv Geod Photogramm Cartogr 31(6):567–576.  https://doi.org/10.7848/ksgpc.2013.31.6-2.567 CrossRefGoogle Scholar
  51. Kearsley AHW, Forsberg R, Olesen A, Bastos L, Hehl K, Meyer U, Gidskehaug A (1998) Airborne gravimetry used in precise geoid computations by ring integration. J Geod 72(10):600–605.  https://doi.org/10.1007/s001900050198 CrossRefGoogle Scholar
  52. Klees R, Tenzer R, Prutkin I, Wittwer T (2008) A data-driven approach to local gravity field modelling using spherical radial basis functions. J Geod 82(8):457–471.  https://doi.org/10.1007/s00190-007-0196-3 CrossRefGoogle Scholar
  53. Koch KR, Kusche J (2002) Regularization of geopotential determination from satellite data by variance components. J Geod 76(5):259–268.  https://doi.org/10.1007/s00190-002-0245-x CrossRefGoogle Scholar
  54. Kusche J (2003) A Monte-Carlo technique for weight estimation in satellite geodesy. J Geod 76(11):641–652.  https://doi.org/10.1007/s00190-002-0302-5 CrossRefGoogle Scholar
  55. Kusche J, Klees R (2002) Regularization of gravity field estimation from satellite gravity gradients. J Geod 76(6):359–368.  https://doi.org/10.1007/s00190-002-0257-6 CrossRefGoogle Scholar
  56. Liang W, Xu X, Li J, Zhu G (2018) The determination of an ultra-high gravity field model SGG-UGM-1 by combining EGM2008 gravity anomaly and GOCE observation data. Acta Geod Cartogr Sin 47(4):425–434.  https://doi.org/10.11947/j.AGCS.2018.20170269 CrossRefGoogle Scholar
  57. Lieb V, Schmidt M, Dettmering D, Börger K (2016) Combination of various observation techniques for regional modeling of the gravity field. J Geophys Res Solid Earth 121:3825–3845.  https://doi.org/10.1002/2015JB012586 CrossRefGoogle Scholar
  58. Martin B, Oteng M, Stefan E (2011) CarbonNet project airborne gravity survey Gippsland Basin, Victoria, Australia 2011 for Victoria State Government Department of Primary industries. Technical reportGoogle Scholar
  59. McCubbine JC, Amos MJ, Tontini FC, Smith E, Winefied R, Stagpoole V, Featherstone WE (2018) The New Zealand gravimetric quasigeoid model 2017 that incorporates nationwide airborne gravimetry. J Geod 92(8):923–937.  https://doi.org/10.1007/s00190-017-1103-1 CrossRefGoogle Scholar
  60. Olesen AV (2003) Improved airborne scalar gravimetry for regional gravity field mapping and geoid determination. Ph.D. thesis, University of Copenhagen, DenmarkGoogle Scholar
  61. Olesen AV, Forsberg R, Kearsley AHW (2000) Great Barrier Reef airborne gravity survey (BRAGS’99). A gravity survey piggybacked on a bathymetry mission. In: Sideris MG (ed) Gravity, geoid and geodynamics 2000, International association of geodesy symposia, vol 123. Springer, Berlin, pp 247–251.  https://doi.org/10.1007/978-3-662-04827-6_41 CrossRefGoogle Scholar
  62. Olesen AV, Andersen OB, Tscherning CC (2002) Merging of airborne gravity and gravity derived from satellite altimetry: test cases along the coast of Greenland. Stud Geophys Geod 46(3):387–394.  https://doi.org/10.1023/A:1019577232253 CrossRefGoogle Scholar
  63. Omang OCD, Forsberg R (2000) How to handle topography in practical geoid determination: three examples. J Geod 74(6):458–466.  https://doi.org/10.1007/s001900000107 CrossRefGoogle Scholar
  64. Ophaug V, Breili K, Gerlach C (2015) A comparative assessment of coastal mean dynamic topography in Norway by geodetic and ocean approaches. J Geophys Res Oceans 120(12):7807–7826.  https://doi.org/10.1002/2015JC011145 CrossRefGoogle Scholar
  65. Panet I, Kuroishi Y, Holschneider M (2011) Wavelet modelling of the gravity field by domain decomposition methods: an example over Japan. Geophys J Int 184(1):203–219.  https://doi.org/10.1111/j.1365-246X.2010.04840.x CrossRefGoogle Scholar
  66. Passaro M, Dinardo S, Quartly GD, Snaith HM, Benvenist J, Cipollini P, Lucash B (2016) Cross-calibrating ALES Envisat and CryoSat-2 Delay–Doppler: a coastal altimetry study in the Indonesian Seas. Adv Space Res 58(3):289–303.  https://doi.org/10.1016/j.asr.2016.04.011 CrossRefGoogle Scholar
  67. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of Earth Gravitational Model (EGM2008). J Geophys Res Solid Earth 117:B04406.  https://doi.org/10.1029/2011JB008916 CrossRefGoogle Scholar
  68. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2013) Correction to “The development and evaluation of the Earth Gravitational Model 2008 (EGM2008)”. J Geophys Res Solid Earth 118(5):2633.  https://doi.org/10.1029/jgrb.50167 CrossRefGoogle Scholar
  69. Pugh D, Woodworth P (2014) Sea-level science: understanding tides, surges, tsunamis and mean sea-level changes. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  70. Ridgway KR, Dunn JR, Wilkin JL (2002) Ocean interpolation by four-dimensional weighted least squares—application to the waters around Australasia. J Atmos Ocean Technol 19(9):1357–1375.  https://doi.org/10.1175/1520-0426(2002)019%3c1357:OIBFDW%3e2.0.CO;2 CrossRefGoogle Scholar
  71. Rio MH, Guinehut S, Larnicol G (2011) New CNES-CLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry, and in situ measurements. J Geophys Res Oceans 116:C07018.  https://doi.org/10.1029/2010JC006505 CrossRefGoogle Scholar
  72. Rio MH, Mulet S, Picot N (2014) Beyond GOCE for the ocean circulation estimate: synergetic use of altimetry, gravimetry, and in situ data provides new insight into geostrophic and Ekman currents. Geophys Res Lett 41(24):8918–8925.  https://doi.org/10.1002/2014GL061773 CrossRefGoogle Scholar
  73. Roelse A, Granger HW, Graham JW (1971) The adjustment of the Australian levelling survey 1970–1971. Technical Report 12, Division of National Mapping, Canberra, AustraliaGoogle Scholar
  74. Sandwell DT, Garcia E, Soofi K, Wessel P, Smith WHF (2013) Towards 1mGal global marine gravity from CryoSat-2, Envisat, and Jason-1. Lead Edge 32(8):892–899.  https://doi.org/10.1190/tle32080892.1 CrossRefGoogle Scholar
  75. Sandwell DT, Müller RD, Smith WHF, Garcia E, Francis R (2014) New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346(6205):65–67.  https://doi.org/10.1126/science.1258213 CrossRefGoogle Scholar
  76. Scharroo R, Leuliette EW, Lillibridge JL, Byrne D, Naeije MC, Mitchum GT (2013) RADS: Consistent multi-mission products. In Proceedings of the symposium on 20 years of progress in radar altimetry. Venice, ItalyGoogle Scholar
  77. Schmidt M, Han SC, Kusche J, Sanchez L, Shum CK (2006) Regional high-resolution spatiotemporal gravity modelling from GRACE data using spherical wavelets. Geophys Res Lett 33(8):L08403.  https://doi.org/10.1029/2005GL025509 CrossRefGoogle Scholar
  78. Schwarz KP, Li YC (1996) What can airborne gravimetry contribute to geoid determination? J Geophys Res Solid Earth 101(8):17873–17881.  https://doi.org/10.1029/96JB00819 CrossRefGoogle Scholar
  79. Sjöberg LE (2005) A discussion on the approximations made in the practical implementation of the remove–compute–restore technique in regional geoid modelling. J Geod 78(11–12):645–653.  https://doi.org/10.1007/s00190-004-0430-1 CrossRefGoogle Scholar
  80. Smith WH (2015) Resolution of seamount geoid anomalies achieved by the SARAL/AltiKa and Envisat RA2 satellite radar altimeters. Mar Geod 38(sup1):644–671.  https://doi.org/10.1080/01490419.2015.1014950 CrossRefGoogle Scholar
  81. Tenzer R, Klees R (2008) The choice of the spherical radial basis functions in local gravity field modelling. Stud Geophys Geod 52(3):287–304.  https://doi.org/10.1007/s11200-008-0022-2 CrossRefGoogle Scholar
  82. Tracey R, Bacchin M, Wynne P (2007) AAGD07: a new absolute gravity datum for Australian gravity and new standards for the Australian National Gravity Database. ASEG Extended Abstracts.  https://doi.org/10.1071/ASEG2007ab149 CrossRefGoogle Scholar
  83. Verron J, Sengenes P, Lambin J, Noubel J, Steunou N, Guillot A, Picot N, Coutin-Faye S, Sharma R, Gairola RM, Murthy RD, Richman JG, Griffin D, Pascual A, Rémy F, Gupta PK (2015) The SARAL/AltiKa altimetry satellite mission. Mar Geod 38(SI):2–21.  https://doi.org/10.1080/01490419.2014.1000471 CrossRefGoogle Scholar
  84. Wittwer T (2009) Regional gravity field modelling with radial basis functions. Ph.D. thesis, Delft University of Technology, The NetherlandsGoogle Scholar
  85. Woodworth PL, Hughes CW, Bingham RW, Gruber T (2012) Towards worldwide height system unification using ocean information. J Geod Sci 2(4):302–318.  https://doi.org/10.2478/v10156-012-004-8 CrossRefGoogle Scholar
  86. Wu Y, Luo Z, Chen W, Chen Y (2017a) High-resolution regional gravity field recovery from Poisson wavelets using heterogeneous observational techniques. Earth Planets Space 69(34):1–15.  https://doi.org/10.1186/s40623-017-0618-2 CrossRefGoogle Scholar
  87. Wu Y, Zhou H, Zhong B, Luo Z (2017b) Regional gravity field recovery using the GOCE gravity gradient tensor and heterogeneous gravimetry and altimetry data. J Geophys Res Solid Earth 122(8):6928–6952.  https://doi.org/10.1002/2017JB014196 CrossRefGoogle Scholar
  88. Wu Y, Zhong B, Luo Z (2018) Investigation of the Tikhonov regularization method in regional gravity field modelling by Poisson wavelets radial basis functions. J Earth Sci-China 29(6):1349–1358.  https://doi.org/10.1007/s12583-017-0771-3 CrossRefGoogle Scholar
  89. Zhang S, Sandwell DT (2017) Retracking of SARAL/AltiKa radar altimetry waveforms for optimal gravity field recovery. Mar Geod 40(1):40–56.  https://doi.org/10.1080/01490419.2016.1265032 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Earth Sciences and EngineeringHohai UniversityNanjingChina
  2. 2.DTU SpaceTechnical University of DenmarkLyngbyDenmark
  3. 3.School of Earth and Planetary SciencesCurtin University of TechnologyPerthAustralia
  4. 4.Geodesy Section, Community Safety and Earth Monitoring DivisionGeoscience AustraliaCanberraAustralia

Personalised recommendations