Journal of Geodesy

, Volume 93, Issue 10, pp 1835–1844 | Cite as

Observed geocenter motion from precise orbit determination of GRACE satellites using GPS tracking and accelerometer data

  • Da KuangEmail author
  • Willy Bertiger
  • Shailen D. Desai
  • Bruce J. Haines
  • Dah-Ning Yuan
Original Article


We present a method to estimate geocenter motion through single low-earth orbiter (LEO) precise orbit determination (POD) using global positioning system (GPS) tracking data and accelerometer data from the GRACE satellites. We fix the values of the GPS ephemerides and time-varying clock offsets to precise estimates from the definitive constellation product produced by the Jet Propulsion Laboratory. As part of the POD process of the LEOs, we estimate a translation of the reference coordinate system realized by the GPS orbit and clock product. Doing so accounts for the inconsistency between the Earth’s center of mass coordinate system used for the orbit integration of the LEOs, and the terrestrial reference frame produced by the GPS orbit and clock product. The resulting translation parameters estimated separately from the GRACE-A and GRACE-B satellites show very similar variations from day to day. They represent the geocenter motion, as realized from the difference between the origin of the terrestrial reference frame represented by the GPS orbit and clock product and the Earth’s instantaneous center of mass defined by the GRACE satellite dynamical orbital motion. Comparisons with geocenter motion observations from other techniques show that our daily estimates of geocenter motion agree well, when smoothed, in both the amplitude and phase of the annual signal. This validates both the high sensitivity of the GRACE GPS measurement type to geocenter motion and the high precision of the GRACE force model enabled by accelerometer measurements, the two essential components for estimation of geocenter motion with this technique.


Geocenter GRACE GPS 



The work described in this paper is carried out by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. We thank Xiaoping Wu for providing the data of unified inverse results. The data of monthly SLR solutions are from The University of Texas at Austin Center for Space Research (, while weekly SLR solutions are from the Astronomical Institute of the University of Bern ( We also thank the Editor-in-Chief and the three anonymous reviewers for their constructive comments and suggestions.

Author contribution

Da Kuang formulated the algorithm, processed the data, and drafted the article. Willy Bertiger developed the analysis tools to enable dynamic GRACE POD using accelerometer data for this study. Shailen Desai conceived the plan to determine the time-varying gravity simultaneously to separate the largest perturbing force and provided inputs to the article. Bruce Haines performed research on the error in reference frame dissemination through GPS products, validated the results and provided inputs to the article. Dah-Ning Yuan performed research on various parameterizations for dynamic GRACE POD using accelerometer data.


  1. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the international terrestrial reference frame based on time series of station positions and earth orientation parameters. J Geophys Res. CrossRefGoogle Scholar
  2. Altamimi Z, Collilieux X, Metivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85(8):457–473. CrossRefGoogle Scholar
  3. Altamimi Z, Rebischung P, Métivier L, Collilieux L (2016) ITRF2014: a new release of the international terrestrial reference frame modeling nonlinear station motions. J Geophys Res Solid Earth 121:6109–6131. CrossRefGoogle Scholar
  4. Bar-Sever Y, Haines B, Kuang D, Nerem S (2012) Geodetic reference antenna in space (GRASP): status and simulations. In: AGU fall meeting, San Francisco, 3–7 Dec 2012Google Scholar
  5. Bertiger W, Bar-Sever Y, Bettadpur S, Dunn C, Haines B, Kruizinga G, Kuang D, Nandi S, Romans L, Watkins M, Wu S (2002) GRACE: millimeters and microns in orbit. In: Proceedings of ION GPS 2002, Portland, OR, 24–27 Sept 2002, pp 2022–2029Google Scholar
  6. Bertiger W, Desai SD, Haines B, Harvey N, Moore AW, Owen S, Weiss JP (2010) Single receiver phase ambiguity resolution with GPS data. J Geod 84:327–337. CrossRefGoogle Scholar
  7. Blewitt G (2003) Self-consistency in reference frames, geocenter definition, and surface loading of the solid earth. J Geophys Res 108(B2):2003. CrossRefGoogle Scholar
  8. Calabia A, Jin S (2016) Thermospheric density estimation and responses to the March 2013 geomagnetic storm from GRACE GPS-determined precise orbits. J Atmos Solar Terr Phys 154:167–179. CrossRefGoogle Scholar
  9. Chen Q, Shen Y, Zhang X, Hsu H, Chen W, Ju X, Lou L (2015) Monthly gravity models derived from GRACE L 1B data using a modified short-arc approach. J Geophys Res 120:1804–1819. CrossRefGoogle Scholar
  10. Cheng MK, Ries JC, Tapley BD (2013) Geocenter variations from analysis of SLR data, in reference frames for applications in geosciences. In: International association of geodesy symposia, vol 138. Springer, Berlin, pp 19–26Google Scholar
  11. Dong D, Yunk Y, Heflin M (2003) Origin of the international terrestrial reference frame. J Geophys Res 108(B4):2200–2209CrossRefGoogle Scholar
  12. Dow JM, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geod 83(3–4):191–198. CrossRefGoogle Scholar
  13. Flury J, Bettadpur S, Tapley B (2008) Precise accelerometry onboard the GRACE gravity field satellite mission. J Adv Space Res 42:1414–1423CrossRefGoogle Scholar
  14. Haines B, Bar-Sever Y, Bertiger W, Desai S, Willis P (2004) One-centimeter orbit determination for Jason-1: new GPS-based strategies. Mar Geod 27(1–2):299–318CrossRefGoogle Scholar
  15. Haines B, Bar-Sever Y, Bertiger W, Desai S, Harvey N, Weiss J (2011) A GPS-based terrestrial reference frame from a combination of terrestrial and orbiter data. In: AGU fall meeting, San Francisco, Dec 2011Google Scholar
  16. Haines BJ, Bar-Sever YE, Bertiger WI, Desai SD, Harvey N, Sibois AE, Weiss JP (2015) Realizing a terrestrial reference frame using the global positioning system. J Geophys Res Solid Earth. CrossRefGoogle Scholar
  17. Kang Z, Tapley B, Bettadpur S, Ries J, Nagel P (2006) Precise orbit determination for GRACE using accelerometer data. Adv Space Res 38:2131–2136CrossRefGoogle Scholar
  18. Kang Z, Tapley B, Chen J, Ries J, Bettadpur S (2009) Geocenter variations derived from GPS tracking of the GRACE satellites. J Geod 83:895–901CrossRefGoogle Scholar
  19. Kuang D, Desai S, Haines B, Sibthorpe A (2014) Orbital accelerometry by LEO GNSS tracking: theory and practice. In: Proceeding of the ION GNSS + 2014, Tampa, Florida, 8–12 Sept 2014, pp 1524–1535Google Scholar
  20. Kuang D, Bar-Sever Y, Haines B (2015) Analysis of orbital configurations for geocenter determination with GPS and low-earth orbiters. J Geod 89(5):471–481. CrossRefGoogle Scholar
  21. Lavallee D, van Dam T, Blewitt G, Clarke P (2006) Geocenter motions from GPS: a unified observation model. J Geophys Res 111:B05405CrossRefGoogle Scholar
  22. Montenbruck O, Kroes R (2003) In-flight performance analysis of the CHAMP BlackJack GPS receiver. GPS Solut 7:74–86CrossRefGoogle Scholar
  23. Rebischung P, Altamimi Z, Springer T (2013) A collinearity diagnosis of the GNSS geocenter determination. J Geod. CrossRefGoogle Scholar
  24. Rietbroek R, Brunnabend SE, Dahle C, Kusche J, Flechtner F, Schröter J, Timmermann R (2009) Changes in total ocean mass derived from GRACE, GPS, and ocean modeling with weekly resolution. J Geophys Res 114:C11004. CrossRefGoogle Scholar
  25. Sosnica K, Jaggi A, Thaller D, Beutler G, Dach R (2014) Contribution of Starlette, Stella, and AJISAI to the SLR-derived global reference frame. J Geod 88:789–804. CrossRefGoogle Scholar
  26. Sun Y, Riva R, Ditmar P (2016) Optimizing estimates of annual variations and trends in geocenter motion and J2 from a combination of GRACE data and geophysical models. J Geophys Res Solid Earth 121:8352–8370. CrossRefGoogle Scholar
  27. Swenson S, Chambers D, Wahr J (2008) Estimating geocenter variations from a combination of GRACE and ocean model output. J Geophys Res. CrossRefGoogle Scholar
  28. Tapley B, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9):L09607. CrossRefGoogle Scholar
  29. Tseng T-P, Hwang C, Sosnica K, Kui C-Y, Liu Y-C, Yeh W-H (2017) Geocenter motion estimated from GRACE orbits: the impact of F10.7 solar flux. Adv Space Res 59:2819–2830. CrossRefGoogle Scholar
  30. van Helleputte T, Visser P (2008) GPS based orbit determination using accelerometer data. Aerosp Sci Technol 12:478–484CrossRefGoogle Scholar
  31. Vigue Y, Lichten SM, Blewitt G, Heflin MB, Malla RP (1992) Precise determination of earths center of mass using measurements from the global positioning system. Geophys Res Lett 19(14):1487–1490CrossRefGoogle Scholar
  32. Watkins MM, Eanes RJ (1997) Observations of tidally coherent diurnal and semidiurnal variations in the geocenter. Geophys Res Lett 24(17):2231–2234CrossRefGoogle Scholar
  33. Wu X, Argus DF, Heflin MB, Ivins ER, Webb FH (2002) Site distribution and aliasing effects in the inversion for load coefficients and geocenter motion from GPS data. Geophys Res Lett 29(24):2210. CrossRefGoogle Scholar
  34. Wu X, Ray J, van Dam T (2012) Geocenter motion and its geodetic and geophysical implications. J Geodyn 58:44–61. CrossRefGoogle Scholar
  35. Wu X, Kusche J, Landers FW (2017) A new unified approach to determine geocentre motion space geodetic and GRACE gravity data. Geophys J Int 209:1398–1402. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations