Advertisement

On the application of Monte Carlo singular spectrum analysis to GPS position time series

  • S. M. Khazraei
  • A. R. Amiri-SimkooeiEmail author
Original Article
  • 127 Downloads

Abstract

Singular spectrum analysis (SSA) has recently been applied to various geodetic time series studies. As a data-adaptive method, SSA is capable of extracting signals with non-constant phase and amplitudes. Although SSA is a competent method in the presence of white noise, the contribution of colored noise, having semi-periodic behavior, degrades its performance. Parts of colored noise can be absorbed in the SSA eigenmodes, which specifies signals and hence resulting in spurious modulation or losing significant signals. Signals and colored noise are thus to be discriminated in the signal identification procedure. Monte Carlo SSA (MCSSA) in its original formulation, providing a significance test against the AR(1) noise null hypothesis, can be misinterpreted when other colored noise structures contribute to the series. We propose an algorithm for MCSSA that is not limited to the AR(1) noise hypothesis. It estimates the noise model parameters using LS-VCE and generates the surrogate data using the Cholesky decomposition. The algorithm is adapted to GPS position time series where the underlying noise is a combination of white noise and flicker noise. GPS position time series, postulated real situation, are first simulated to include annual and semiannual signals plus white and flicker noise. The results indicate that MCSSA can extract the annual and semiannual signals with 2.11 and 1.25 mm amplitudes (the global mean values) from 20-year-long time series, with 95% confidence level, if flicker noise is less than 17 and 13 \( {\text{mm/year}}^{1/4} \), respectively. The longer the time series or the stronger the signals are, the higher these thresholds will be. This conclusion is also verified when applying MCSSA to the up component of GPS position time series of 347 JPL stations.

Keywords

Time series analysis Least-squares variance component estimation Monte Carlo singular spectrum analysis (MCSSA) 

References

  1. Allen MR, Smith LA (1996) Monte Carlo SSA: detecting irregular oscillations in the presence of colored noise. J Clim 9(12):3373–3404Google Scholar
  2. Amiri-Simkooei A (2007) Least-squares variance component estimation: theory and GPS applications. Delft University of Technology, DelftGoogle Scholar
  3. Amiri-Simkooei AR (2009) Noise in multivariate GPS position time-series. J Geod 83(2):175–187.  https://doi.org/10.1007/s00190-008-0251-8 Google Scholar
  4. Amiri-Simkooei AR, Tiberius CCJM, Teunissen PJG (2007) Assessment of noise in GPS coordinate time series: Methodology and results. J Geophys Res Solid Earth.  https://doi.org/10.1029/2006jb004913 Google Scholar
  5. Amiri-Simkooei AR, Zangeneh-Nejad F, Asgari J (2013) Least-squares variance component estimation applied to GPS geometry-based observation model. J Surv Eng 139(4):176–187Google Scholar
  6. Amiri-Simkooei AR, Mohammadloo TH, Argus DF (2017) Multivariate analysis of GPS position time series of JPL second reprocessing campaign. J Geodesy 91(6):685–704.  https://doi.org/10.1007/s00190-016-0991-9 Google Scholar
  7. Amiri-Simkooei AR, Hosseini-Asl M, Asgari J, Zangeneh-Nejad F (2018) Offset detection in GPS position time series using multivariate analysis. GPS Solut 23(1):13.  https://doi.org/10.1007/s10291-018-0805-z Google Scholar
  8. Argus DF, Gordon RG, Heflin MB, Ma C, Eanes RJ, Willis P, Peltier WR, Owen SE (2010) The angular velocities of the plates and the velocity of Earth’s centre from space geodesy. Geophys J Int 180(3):913–960.  https://doi.org/10.1111/j.1365-246X.2009.04463.x Google Scholar
  9. Baarda W (1968) A testing procedure for use in geodetic networks. Technical report, vol. 2(5), Netherlands Geodetic Commission, Geodesy, New series, DelftGoogle Scholar
  10. Bennett RA (2008) Instantaneous deformation from continuous GPS: contributions from quasi-periodic loads. Geophys J Int 174(3):1052–1064.  https://doi.org/10.1111/j.1365-246X.2008.03846.x Google Scholar
  11. Blewitt G, Lavallée D (2002) Effect of annual signals on geodetic velocity. J Geophys Res Solid Earth. 107(B7):ETG-9.  https://doi.org/10.1029/2001jb000570 Google Scholar
  12. Bonforte A, Puglisi G (2006) Dynamics of the eastern flank of Mt. Etna volcano (Italy) investigated by a dense GPS network. J. Volcanol Geotherm Res 153(3):357–369.  https://doi.org/10.1016/j.jvolgeores.2005.12.005 Google Scholar
  13. Bos MS, Fernandes RMS, Williams SDP, Bastos L (2008) Fast error analysis of continuous GPS observations. J Geodesy 82(3):157–166Google Scholar
  14. Broomhead DS, King GP (1986) Extracting qualitative dynamics from experimental data. Physica D 20(2–3):217–236Google Scholar
  15. Cervelli PF, Fournier T, Freymueller J, Power JA (2006) Ground deformation associated with the precursory unrest and early phases of the January 2006 eruption of Augustine Volcano. Alaska. Geophys Res Lett.  https://doi.org/10.1029/2006gl027219 Google Scholar
  16. Chen Q, van Dam T, Sneeuw N, Collilieux X, Weigelt M, Rebischung P (2013) Singular spectrum analysis for modeling seasonal signals from GPS time series. J Geodyn 72:25–35Google Scholar
  17. Gentle JE (1998) Numerical Linear Algebra for Applications in Statistics. Springer, New York.  https://doi.org/10.1007/978-1-4612-0623-1 Google Scholar
  18. Ghil M, Taricco C (1997) Advanced spectral analysis methods, past and present variability of the solar-terrestrial system: measurement, data analysis and theoretical models, pp 137–159Google Scholar
  19. Ghil M, Allen M, Dettinger M, Ide K, Kondrashov D, Mann M, Robertson AW, Saunders A, Tian Y, Varadi F (2002) Advanced spectral methods for climatic time series. Rev Geophys 40(1):1–11Google Scholar
  20. Greco G, Kondrashov D, Kobayashi S, Ghil M, Branchesi M, Guidorzi C, Stratta G, Ciszak M, Marino F, Ortolan A (2016) Singular spectrum analysis for astronomical time series: constructing a parsimonious hypothesis test. In: Napolitano N, Longo G, Marconi M, Paolillo M, Iodice E (eds) The Universe of digital sky surveys. Astrophysics and space science proceedings, vol 42. Springer, ChamGoogle Scholar
  21. Groth A, Ghil M (2011) Multivariate singular spectrum analysis and the road to phase synchronization. Phys Rev E 84(3):036206Google Scholar
  22. Gruszczynska M, Klos A, Gruszczynski M, Bogusz J (2016) Investigation of time-changeable seasonal components in the GPS height time series: a case study for Central Europe. Acta Geodyn Geomater 13(3):281–289Google Scholar
  23. Gruszczynska M, Klos A, Rosat S, Bogusz J (2017) Deriving common seasonal signals in GPS position time series: by using multichannel singular spectrum analysis. Acta Geodyn Geomater. 14:273–284.  https://doi.org/10.13168/agg.2017.0010 Google Scholar
  24. Hassani H (2007) Singular spectrum analysis: methodology and comparison. J Data Sci 5(2):239–257Google Scholar
  25. Johansson JM et al (2002) Continuous GPS measurements of postglacial adjustment in Fennoscandia 1. Geodetic results. J Geophys Res Solid Earth 107(B8):ETG 3-1–ETG 3-27.  https://doi.org/10.1029/2001jb000400 Google Scholar
  26. Khazraei SM, Nafisi V, Amiri-Simkooei AR, Asgari J (2017) Combination of GPS and leveling observations and geoid models using least-squares variance component estimation. J Surv Eng 143(2):04016023Google Scholar
  27. King MA et al (2010) Improved constraints on models of glacial isostatic adjustment: a review of the contribution of ground-based geodetic observations. Surv Geophys 31(5):465–507.  https://doi.org/10.1007/s10712-010-9100-4 Google Scholar
  28. Klos A, Bos MS, Bogusz J (2017a) Detecting time-varying seasonal signal in GPS position time series with different noise levels. GPS Solutions 22(1):21.  https://doi.org/10.1007/s10291-017-0686-6 Google Scholar
  29. Klos A, Gruszczynska M, Bos MS, Boy J-P, Bogusz J (2017b) Estimates of vertical velocity errors for IGS ITRF2014 stations by applying the improved singular spectrum analysis method and environmental loading models. Pure Appl Geophys.  https://doi.org/10.1007/s00024-017-1494-1 Google Scholar
  30. Kondrashov D, Ghil M (2006) Spatio-temporal filling of missing points in geophysical data sets. Nonlinear Process Geophys 13(2):151–159Google Scholar
  31. Kreemer C, Blewitt G, Klein EC (2014) A geodetic plate motion and global strain rate model. Geochem Geophys Geosyst 15(10):3849–3889.  https://doi.org/10.1002/2014GC005407 Google Scholar
  32. Lü W-C, Cheng S-G, Yang H-S, Liu D-P (2008) Application of GPS technology to build a mine-subsidence observation station. J China Univ Min Technol 18(3):377–380Google Scholar
  33. Montillet JP, Williams SDP, Koulali A, McClusky SC (2015) Estimation of offsets in GPS time-series and application to the detection of earthquake deformation in the far-field. Geophys J Int 200(2):1207–1221.  https://doi.org/10.1093/gji/ggu473 Google Scholar
  34. Nikolaidis R (2002) Observation of geodetic and seismic deformation with the Global Positioning System. University of California, San DiegoGoogle Scholar
  35. Shen Y, Peng F, Li B (2015) Improved singular spectrum analysis for time series with missing data. Nonlinear Processes Geophys 22(4):371–376.  https://doi.org/10.5194/npg-22-371-2015 Google Scholar
  36. Teunissen PJG (2000) Testing theory an introduction. Testing theory an introduction. Delft University Press, VSSD Publisher, Delft, p 156Google Scholar
  37. Teunissen PJG, Amiri-Simkooei AR (2008) Least-squares variance component estimation. J Geodesy 82(2):65–82.  https://doi.org/10.1007/s00190-007-0157-x Google Scholar
  38. Teunissen PJG, Simons DG, Tiberius CCJM (2005) Probability and observation theory, (Lecture notes AE2–E01). Faculty of Aerospace Engineering, Delft University of Technology, DelftGoogle Scholar
  39. Vautard R, Ghil M (1989) Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D: Nonlinear Phenom 35(3):395–424Google Scholar
  40. Vautard R, Yiou P, Ghil M (1992) Singular-spectrum analysis: a toolkit for short, noisy chaotic signals. Physica D: Nonlinear Phenom 58(1):95–126Google Scholar
  41. Walwer D, Calais E, Ghil M (2016) Data-adaptive detection of transient deformation in geodetic networks. J Geophys Res Solid Earth 121(3):2129–2152.  https://doi.org/10.1002/2015JB012424 Google Scholar
  42. Wang X, Cheng Y, Wu S, Zhang K (2016) An enhanced singular spectrum analysis method for constructing nonsecular model of GPS site movement. J Geophys Res Solid Earth 121(3):2193–2211.  https://doi.org/10.1002/2015JB012573 Google Scholar
  43. Williams SDP (2006) Personal communication). Proudman Oceanographic Laboratory, National Oceanography Centre, LiverpoolGoogle Scholar
  44. Williams SDP, Bock Y, Fang P, Jamason P, Nikolaidis RM, Prawirodirdjo L, Miller M, Johnson DJ (2004) Error analysis of continuous GPS position time series. J Geophys Res Solid Earth.  https://doi.org/10.1029/2003jb002741 Google Scholar
  45. Xu C (2016) Reconstruction of gappy GPS coordinate time series using empirical orthogonal functions. J Geophys Res Solid Earth 121(12):9020–9033.  https://doi.org/10.1002/2016JB013188 Google Scholar
  46. Xu C, Yue D (2015) Monte Carlo SSA to detect time-variable seasonal oscillations from GPS-derived site position time series. Tectonophysics 665:118–126Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Geomatics Engineering, Faculty of Civil Engineering and TransportationUniversity of IsfahanIsfahanIran

Personalised recommendations